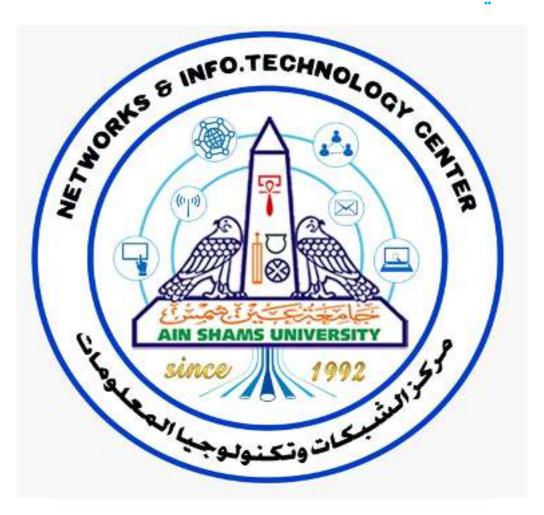


Mona Maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني



Mona Maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

INTERNET OF THINGS SECURITY THREATS ANALYSIS

By

Mahmoud Maher El-Sayed Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

INTERNET OF THINGS SECURITY THREATS ANALYSIS

By Mahmoud Maher El-Sayed Mohammed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Amin Mohamed Nassar

Professor of Electronics Electronics and Electrical Communication Faculty of Engineering, Cairo University

INTERNET OF THINGS SECURITY THREATS ANALYSIS

By **Mahmoud Maher El-Sayed Mohammed**

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee

Prof. Dr. Amin Mohamed Nassar, (Thesis Main Advisor) Professor at the faculty of Engineering, Cairo University.

Prof. Dr. El-Sayed Mostafa Saad, (External Examiner) Professor at the faculty of Engineering, Helwan university.

Dr. Mohamed Mohamed Ali El-Gazzar, (External Examiner) Assistant professor at the faculty of Engineering, Arab Academy for Science, Technology & Maritime Transport.

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Mahmoud Maher El-Sayed

Date of Birth: 01/01/1990 **Nationality:** Egyptian

E-mail: Mahmoudmaher2011@gmail.com

Phone: 01128000719

Address: 2 Ahmed Abd El-Nabi st, Hadayek Helwan, Cairo

Registration Date: 01/10/2013 **Awarding Date:**/2019 **Degree:** Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Amin Mohamed Nassar

Examiners:

Porf. Amin Mohamed Nassar (Thesis Main Advisor)

Professor at the faculty of Engineering, Cairo

University.

Prof. El-Sayed Mostafa Saad (External examiner) Professor at the faculty of Engineering, Helwan

university.

Dr. Mohamed Mohamed Ali El-Gazzar (External examiner) Assistant professor at the faculty of

Engineering, Arab Academy for Science, Technology &

Maritime Transport.

Title of Thesis:

Internet of Things different Threats attack and Hardware Trojan effect on the Coordinate Rotation Digital Computer core.

Key Words:

Internet-of-Things (IoT), Denial of Service, Side-Channel Analysis, Hardware Attack, Coordinate Rotation Digital Computer.

Summary:

Internet of Things (IoT) devices starts to spread all over the world. IoT revolution makes the devices smarter and it improves the performance of the devices. The devices can now exchange information between each other and distribute data analysis effort between each other or send it to data analysis center. As a prediction from Cisco, the number of IoT devices will be 50 billion IoT device connected together in 2020. This enormous number will make us think about immunity of these IoT devices against the Hardware attacks. We propose in this Thesis the effect of inserting Hardware Threat in Coordinate Rotation Digital Computer (CORDIC). Methods are presented in this Thesis to identify Hardware Trojan and its effect on the CORDIC performance. Two ways to improve the immunity of the hardware design against Hardware Trojan are represented here.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Mahmoud Maher El-Sayed Mohammed.	Date:
Signature:	

Acknowledgments

First, I would like to thank my spouse and my family who support me in this thesis travel and they are trying to push me forward. I would also to thank Dr Amin Nassar for his advices and his open office door all the time. Thanks also for Dr Mohamed El-Gazzar who push me forward to resume this thesis and direct me to the right way in my research project.

Table of Contents

DISCLAIME	ZR	I
ACKNOWLI	EDGMENTS	II
TABLE OF (CONTENTS	III
LIST OF TA	BLES	VI
LIST OF FIG	GURES	VII
	ATURE	
ABSTRACT.		IX
CHAPTER 1	: INTRODUCTION	1
1.1.	IoT	1
1.1.1.	IoT Network	
1.1.2.	IoT Methodology	
1.1.3.	Benefits of IoT	
1.1.4.	IoT Devices Statistics	
1.1.5.	IoT Concept History	
1.1.6.	Inventing on IoT	
1.1.7.	IoT Applications	
1.1.8.	Building IoT	
1.1.9.	Importance of IoT	
1.1.10.	Management of IoT	5
1.1.11.	IoT Device Connectivity	5
1.1.12.	IoT Challenges	6
1.2.	IOT DEVICES	8
1.2.1.	Smart Homes	10
1.2.2.	Smart Elder Care	11
1.2.3.	Medical and Healthcare	11
1.2.4.	Sport Competitions	12
1.2.5.	Transportation	12
1.2.6.	Manufacturing	12
1.2.7.	Agriculture Field	14
1.2.8.	Infrastructure Field	14
1.2.9.	Governmental field	
1.2.10.	Energy Saving	
1.2.11.	Environment Observation	
1.3.	IOT STANDARDS	16
1.3.1.	Zigbee Standard	
1.3.2.	Long Range (LoRa) Standard	
1.3.3.	Long-Term Evolution for Machines (LTE-M) Standard	
1.3.4.	WI_FI Standard	
1.3.5.	Bluetooth Low Energy Standard	19

1.3.6.	Narrow Band	20
1.4.	IOT DEVICE SECURITY	20
1.4.1.	Security Concerns	22
1.4.2.	Side-Channel Analysis Attack	24
1.4.3.	Denial of Service	25
1.4.4.	Hardware Trojan	26
	R 2 : HARDWARE THREAT EFFECT ON PARALLEL (
IOT DEVICE	ES	27
2.1.	Introduction	27
2.2.	SECURITY ATTACKS	28
2.2.1.	Side-Channel Analysis (SCA)	28
2.5.2.1.	Output Delay Comparison	
2.5.2.2.	Total Area Comparison	
2.5.2.3. 2.5.2.4.	Power Consumption Comparison Critical Path Delay Comparison	
2.5.2.5.	Max Clock Frequency Comparison	
2.5.3.	Pipelined and Parallel CORDIC Architecture Comparison	
2.5.4.	Pipelined and Parallel CORDIC Architecture Comparison	
2.6.	HARDWARE TROJAN EFFECT ON PARALLEL CORDIC PRO	CESSOR 35
2.6.1.	Parallel CORDIC Architecture	36
2.7.	HARDWARE TROJAN ARCHITECTURE	37
2.8.	DETECTION METHOD	
2.9.	Results	
2.10.	CONCLUSION	
	R 3 : DESIGN AND IMPLEMENTATION NEW TECHN	_
PREVENT T	ROJAN THREAD IN PARALLEL CORDIC	40
3.1.	Introduction	40
3.2.	HARDWARE ATTACKS ELIMINATION	41
3.2.1.	Dynamic permutation	
3.2.2.	Network on chip	
3.2.3.	Voting Algorithm	
3.2.4.	Lockup Table	
3.3.	TROJAN THREAD ATTACK	
3.4.	Trojan thread Exclusion	44
3.4.1.	Voting Algorithm	
3.4.2.	Lockup Table Technique	
3.5.	RESULTS	
3.6.	Conclusion	
	: DISCUSSION AND CONCLUSIONS	
	ES	
	BLICATIONS	
APPENDIX A	A: VERILOG CODES	54
•	CORDIC CODE	54

•	CORDIC WITH TROJAN ATTACK CODE	58
•	CORDIC TESTBENCH	59
•	CORDIC ATTACKED TESTBENCH	64
•	CORDIC REDUNDANT CODE	69
•	CORDIC LOCKED UP CODE	70

List of Tables

Table 2. 1: Angle value according to J	30
Table 2. 2: Comparison between Parallel CORDIC and Pipelined CORDIC	35
Table 2. 3:DATA path delays due to the Trojan insertion	

List of Figures

Figure 1. 1: Internet of Things Benefits	2
Figure 1. 2: IoT Communication standards	6
Figure 1. 3: IoT network in Factory	7
Figure 1. 4: Internet of Things Applications	
Figure 1. 5: Internet of Things List	
Figure 1. 6: Fourth revolution of the industry	13
Figure 1. 7: Different Attack Types to IoT	21
Figure 1. 8: Design Architecture of Cyber-Physical Systems	23
Figure 2. 1: Vector rotation between two vectors	30
Figure 2. 2: Parallel CORDIC Output Delay	33
Figure 2. 3: Pipelined CORDIC Output Delay	33
Figure 2. 4: Parallel Architecture of CORDIC	36
Figure 2. 5: Hardware Trojan Architecture	37
Figure 2. 6: Parallel CORDIC output not affected by Hardware Trojan	
Figure 3. 1: Dynamic Permutation Technique	42
Figure 3. 2: Trojan thread Architecture	43
Figure 3. 3: Trojan thread Architecture	44
Figure 3. 4: Voting Algorithm Architecture	45
Figure 3. 5: Voting Algorithm outputs with defected CORDIC	
Figure 3. 6: Lockup Table Algorithm Architecture	
Figure 3. 7: Lockup Table Algorithm outputs with defected CORDIC	

Nomenclature

AP Access Point

AMI Advanced metering infrastructure

BCD Binary-coded decimal BLE Bluetooth Low Energy

CORDIC Coordinate Rotation Digital Computer

CPA Correlation power analysis
DPA Differential power analysis

COAP Constrained Application Protocol

DOS Denial of service

DSP Digital signal processing

DTLS Datagram Transport Layer Security

HT Hardware Trojan IC Integrated circuit

IMS Intelligent Maintenance Systems

IoT Internet of Things
IP Intellectual Property

LTE-M Long-Term Evolution for Machines
LoRa Long-Range Wireless Communication

LPWA Low power wide area

LPWAN Low power wide-area network

MQTT Message Queuing Telemetry Transport

M2M Machine-to-machine

NB Narrow Band

NFC Near-field communication

NoC Network on Chip

RFID Radio Frequency Identification

RTL Register-transfer level
SCA Side-Channel Analysis
SIM Subscriber identify module
SPA Simple power analysis
TIM Traffic Indication Map
TWT Target Wake Time

Abstract

Internet of Things (IoT) devices starts to spread all over the world. IoT revolution makes the devices smarter and it improves the performance of the devices. The devices can now exchange information between each other and distribute data analysis effort between each other or send it to data analysis center. As a prediction from Cisco, the number of IoT devices will be 50 billion IoT device connected together in 2020. This enormous number will make us think about immunity of these IoT devices against the Hardware attacks. There are security attacks that can affect IoT device. The Side-Channel Analysis (SCA) aims to get information from the IoT device like power consumption, delays, and electro- magnetic radiated from the device while it performs any cryptographic algorithm. Denial of service (DOS) attack is cyber-attack. This attack affects the connection between the IoT device and the network by flooding the IoT device with excess requests. Hardware Trojan can affect the IC performance in different manners other than the functionality like changing the power cycle time if the chip has sleep and wakeup modes, changing the clock frequency that adjusted internally, Make the processor busy by sending false interrupts to it etc. We will see the effect of inserting Hardware Threat in Coordinate Rotation Digital Computer (CORDIC). Methods like simulations comparison and synthesizing difference are presented in this thesis to identify Hardware Trojan and its effect on the CORDIC performance. If we want to make our design immune against the hardware trojan, there are two methods represented here in the thesis. First method is redundant cores method. This method is done by inserting two redundant similar cores beside the main core and make voting between these cores. If one core is infected by hardware trojan, then the voting controller will see that its output is different from the two other cores output and isolate its output. The second method is lockup table method. This method depends on inserting lockup table beside the main core and another redundant core. We will store some of our expected outputs and compare these outputs to the output from the cores, if one core is different to the expected output, then we will isolate its output and the other core which match expected output will connected to the global output.