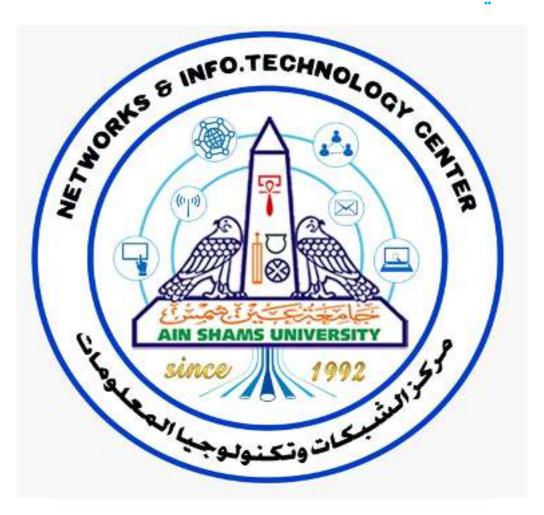


Mona Maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني



Mona Maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

EVALUATING THE PERFORMANCE OF MICROBIAL DESALINATION CELLS SUBJECTED TO DIFFERENT OPERATIONAL CONDITIONS

By

Mostafa Ragab Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

Civil Engineering - Public Works

EVALUATING THE PERFORMANCE OF MICROBIAL DESALINATION CELLS SUBJECTED TO DIFFERENT OPERATIONAL CONDITIONS

By Mostafa Ragab Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

Civil Engineering – Public Works

Under the Supervision of

Prof. Dr. Hisham S. Abdel-Halim

Associate Prof. Abdelsalam A.

Elawwad

Professor of Environmental and Sanitary
Engineering
Department of Public Works Engineering
Faculty of Engineering, Cairo University

Associate Professor of Environmental and
Sanitary Engineering
Department of Public Works Engineering
Faculty of Engineering, Some University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

EVALUATING THE PERFORMANCE OF MICROBIAL DESALINATION CELLS SUBJECTED TO DIFFERENT OPERATIONAL CONDITIONS

By Mostafa Ragab Ibrahim

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY
in

Civil Engineering – Public Works

Approved by the
Examining Committee

Prof. Dr. Hisham Sayed Abdel-Halim, Thesis Main Advisor

Associate Prof. Abdelsalam Ahmed Elawwad, Advisor

Associate Prof. Mona Mohamed Galal El-Din, Internal Examiner

Associate Prof. Ahmed Mohamed Abdelmegeed Mekawy, External Examiner

(Associate Professor at Housing and Building National Research Center)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 **Engineer's Name:** Mostafa Ragab Ibrahim

Date of Birth: 12/12/1988 **Nationality:** Egyptian

E-mail: Mostafa.ragab16@gmail.com

Phone: +20-1007619780

Address: 14 El tony st. / Mahata st., Giza

Registration Date: 01/03/2015 **Awarding Date:** 01/03/2019

Degree: Doctor of Philosophy

Department: Civil Engineering - Public Works

Supervisors:

Prof. Hisham S. Abdel-Halim

Associate Prof. Abdelsalam A. Elawwad

Examiners:

Prof. Dr. Hisham S. Abdel-Halim (Thesis Main

Advisor)

Associate Prof. Abdelsalam A. Elawwad (Advisor)
Associate Prof. Mona M. Galal El-Din (Internal

Examiner)

Associate Prof. Ahmed M. A. Mekawy (External

Examiner)

Title of Thesis:

Evaluating the Performance of Microbial Desalination Cells Subjected to Different Operational Conditions

Key Words:

Desalination, substrate concentration; external resistance; temperature; SEM images

Summary:

Operational conditions have a tremendous effect on the performance of Microbial Desalination Cells (MDC). In this study, the MDCs performance was comprehensively investigated under three phases. In the first phase, the MDCs were tested at three different temperatures zones. The increase in temperature resulted in reduction in the internal resistance which improves the desalination. It was demonstrated that the MDCs are adaptable to function at different operation temperatures. In the second phase, the MDCs was tested under different substrate strengths. Operation of the MDC using high concentration substrate revealed higher internal resistance and lower performance due to the substrate inhibition effect. It was found that feeding the MDC with low to medium substrate concentration with continuous feeding at short batch cycle could achieve the best COD removal efficiency, CEs and voltage generation compared with operating the MDCs at high substrate concentration over long batch cycles. In the third phase, the MDCs the performance of MDCs was investigated concurrently under different substrate strengths and variable external resistances. The external resistance was found to have significant effect on COD removal and CEs. The desalination pattern of the MDCs tends to be very close to each other at high external resistances above due to limitations of electron flow regardless the substrate concentration.

Disclaimer

I hereby declare that this thesis is my own ori been submitted for a degree qualification at any of declare that I have appropriately acknowledged all the references section.	other university or institute. I further
Name: Mostafa Ragab	Date:
Signature:	

Dedication

To my lovely family

Acknowledgments

I would like to give my sincere thanks to the support I have received from many individuals right from the beginning of my PhD program. First and foremost, I am grateful for the opportunity to work under the direction of my advisors, Prof. Hisham Abdel-halim and Dr. Abdelsalam A. Elawwad. I would like to thank them for the tremendous support, guidance, and insight they have offered me on my research work, and for the priceless advice on my career. I would also like to extend my thanks to the examining committee members for their advice and comments on my dissertation.

Also, I would like to acknowledge the financial support of Cairo University through Research Project no. (176/2008) as well as the technical support of the Housing and Building National Research Centers for the SEM images.

A special thanks go to my family for their continuous support during the last four years while working on my PhD.

Table of Contents

DISCLA	AIMER	I
DEDICA	ATION	II
ACKNO	WLEDGMENTS	III
TABLE	OF CONTENTS	IV
LIST OI	F TABLES	VI
LIST OF	F FIGURES	VII
NOMEN	NCLATURE	X
ABSTRA	ACT	XII
	ER 1 : INTRODUCTION	
1.1.	Introduction	1
1.2.	PROBLEM STATEMENT	
1.3.	RESEARCH OBJECTIVES	
1.4.	THESIS STRUCTURE	
CHAPT	ER 2 : LITERATURE REVIEW	5
2.1.	EMERGING BIOELECTROCHEMICAL SYSTEMS (BESS)	5
2.1.1		
2.1.2		
2.1.3	Microbial Electrolysis Cells (MECs)	8
2.1.4	Microbial Electrosynthesis (MES)	9
2.1.5	Enzymatic Fuel Cells (EFCs)	10
2.1.6	Plant Microbial Fuel Cells (PMFCs)	11
2.2.	MICROBIAL DESALINATION CELLS (MDCs)	11
2.2.1	. Working Principles	11
2.2.2	MDC Configurations	12
2.2.3	MDCs Bioelectrochemical Performances	25
2.2.4	Applications of MDCs	25
2.2.5	MDC Performance Challenges	25
	2.5.1. Effect of inter-distance membrane	
	2.5.2. Control of pH Imbalance	
	2.5.4. Scaling and fouling of IEM	
2.3.	Summary	
СНАРТ	ER 3: MATERIALS AND METHODOLOGY	41
3.1.	MODEL CONSTRUCTION AND SET-UP	41
3.2.	EQUIPMENT, MATERIALS AND CONSUMABLES	44
3.3.	ELECTROLYTES COMPOSITION	
3.4.	OPERATIONAL CONDITIONS AND ANALYSIS	

3.5.	SCANNING ELECTRON MICROSCOPY	53
3.6.	QUALIFICATION OF MICROBIAL COMMUNITY	54
CHAPTE	R 4 RESULTS AND DISCUSSION	55
4.	1. EVALUATING THE PERFORMANCE OF MICROBIAL DESALINATION	CELLS
SUBJECT	TED TO DIFFERENT OPERATING TEMPERATURES "EXPERIMENTS NO.1"	55
4.1.1.	Start-up under Diverse Temperature Zones	55
4.1.2.	Effect of Temperature on COD Removal and CEs	55
4.1.3.	Effect of Temperature on Electricity Generation	58
4.1.4.	Effect of Temperature on Desalination Rates	62
4.1.5.	Fouling of Ion Exchange Membranes	64
4.1.6.	Changing of Temperature Zones	81
4.2		
S U.	BSTRATE STRENGTHS AND VARIABLE EXTERNAL RESISTANCES "EXPERI	MENTS
	No.2"	85
4.2.1.	Effect of Substrate Concentration on Cells Voltage and Polarization	85
4.2.2.	COD Removal Rates and Cells Columbic Efficiencies	
4.2.3.	Operation of the Cells at Different External Loads	93
4.2.3		
4.2.3		
4.2.3	.3. Desalination efficiencies and rates at different resistances	98
CHAPTE	R 5 CONCLUSIONS	100
REFERE	NCES	102
A DDENID	IXA: MACROGEN REPORT FOR MICROBIOLOGICAL ANA	vete
AND QUA	ALIFICATION	114

List of Tables

Table 2.1: MDC Configurations and their advantages, challenges and special feature	s 13
Table 2.2: MDCs configurations materials and the corresponding bioelectrochemical	1
performances	26
Table 2.3: Applications of MDCs and their Performance	33
Table 2.4: Applications of MDCs for Nutrient Recovery and their Performance	35
Table 2.5: Applications of MDCs for Water Softening and their Performance	35
Table 2.6: Applications of MDCs for Production of Chemicals and Gases and their	
Performance	36
Table 3.1: Measurement equipment used during the experimental works	44
Table 3.2: Photos for the used materials and consumables during the experimental	
works	48
Table 3.3: Composition of the synthetic wastewater used in experiment no.2	50

List of Figures

Figure 2.1: Schematic diagram of bio-electrochemical system [43]	6
Figure 2.2: Schematic overview of various types of bioelectrochemical systems (BE [51]	
Figure 2.3: Typical Schematic for Microbial Fuel Cell [51]	8
Figure 2.4: Typical Schematic for Microbial Electrolysis Cell [51]	9
Figure 2.5: Typical Schematic for Microbial Electrosynthesis [65]	
Figure 2.6: Typical Schematic for Microbial Enzymatic Fuel Cells [68]	10
Figure 2.7: Typical Schematic for Plant Microbial Fuel Cells [70]	11
Figure 2.8: Typical Schematic for Microbial Desalination Cell [81]	13
Figure 2.9: Typical schematic for Air Cathode MDC [75]	16
Figure 2.10: Typical Schematic for Bio-cathode MDC [86]	17
Figure 2.11: Typical Schematic for Stack Structure MDC [87]	
Figure 2.12: Typical Schematic for Recirculation MDC [88]	
Figure 2.13: Typical Schematic for Capacitive Adsorption Capability MDC [80]	19
Figure 2.14: Typical Schematic for Upflow MDC [89]	19
Figure 2.15: Typical Schematic for Osmotic MDC [91]	20
Figure 2.16: Typical Schematic for Bipolar Membrane MDC [21]	21
Figure 2.17: Typical Schematic for Decoupled MDC [21, 92]	22
Figure 2.18: Typical Schematic for Ion-exchange resin coupled MDC	22
Figure 2.19: Typical Schematic for Microbial Electrolysis Desalination and Chemic Production Cell [95]	
Figure 2.20: Typical Schematic for Separator coupled stacked circulation microbial desalination cell [28]	
Figure 2.21: Typical Schematic for Multi-stage Microbial Desalination Cell [85]	24
Figure 2.22: Typical Schematic for Photosynthetic Microbial Desalination Cell [97]]25
Figure 3.1: Schematic for the lab-scale MDCs	42
Figure 3.2: MDC model used in experiment no.1	42
Figure 3.3: MDC model used in experiment no.2	43
Figure 3.4: Arrangements and connections for a) C1, b) C2 and c) C3 used in experiment no.1	43
Figure 3.5: Arrangements and connections of the three MDCs used in experiment n	
Figure 3.6: Schematic for Inspect TM scanning electron microscope	
Figure 3.7: Inspect TM scanning electron microscope interface	
Figure 4.1: Voltages obtained during the 216 hours start-up period	
Figure 4.2: a) COD removal efficiencies and b) CEs at different temperature zones.	
Figure 4.3: Current densities versus time for the three MDCs operating in different temperature zones	

Figure 4.4: Power densities for the three MDCs operating in different temperature zones by measuring the stable voltage generated across different external resistances	.61
Figure 4.5: Polarization curves for the three MDCs operating in different temperature	e
zones by measuring the stable voltage generated across different external resistances	
Figure 4.6: Desalination efficiency per cycle in different temperature zones	
Figure 4.7: Desalination rates per cycle in different temperature zones	
Figure 4.8: SEM for new anion exchange membranes (at two different magnification	,
Figure 4.9: SEM for C1-AEM facing anode chamber (at two different magnifications	s)
Figure 4.10: SEM for C1-AEM-facing desalination chamber (at two different magnifications)	
Figure 4.11: SEM for C2-AEM facing anode chamber (at two different magnification	
Figure 4.12: SEM for C2-AEM-facing desalination chamber (at magnitude of 1300 a left and 2500 at right)	at
Figure 4.13: SEM for C3-AEM facing anode chamber (at two different magnification	ns)
Figure 4.14: SEM for AEM-facing desalination chamber (at two different magnifications)	71
Figure 4.15: SEM for C1-AEM facing anode chamber after cleaning (at two different magnifications)	t
Figure 4.16: SEM for C1- AEM facing desalination chamber after cleaning (at two different magnifications)	
Figure 4.17: SEM for New CEM (at two different magnifications)	
Figure 4.18: SEM for C1-CEM facing desalination chamber (at two different magnifications)	
Figure 4.19: SEM for C1-CEM-facing cathode chamber (at two different magnifications)	
Figure 4.20: SEM for C2-CEM-facing desalination chamber (at two different magnifications)	
Figure 4.21: SEM for C2-CEM-facing cathode chamber (at two different magnifications)	
Figure 4.22: SEM for C3-CEM-facing desalination chamber (at two different magnifications)	
Figure 4.23: SEM for C3-CEM-facing cathode chamber (at two different magnifications)	
Figure 4.24: Current densities after operating of C1 and C3 after changing the temperature zone	
Figure 4.25: COD removal efficiencies of C1 and C3 after changing the temperature zone	
Figure 4.26: CEs of C1 and C3 after changing the temperature zone	
Figure 4.27: Desalination efficiency per cycle of C1 and C3 after changing the	
temperature zone	84

Figure 4.28: Desalination rates per cycle of C1 and C3 after changing the temperature
zone84
Figure 4.29: Recorded voltage for the three microbial desalination cells operated at different substrate concentrations
Figure 4.30: Power Curve for the three microbial desalination cells operated at different substrate concentrations
Figure 4.31: Polarization Curve for the three microbial desalination cells operated at different substrate concentrations
Figure 4.32: COD removal efficiencies for the three MDCs operated at different substrate concentrations
Figure 4.33: COD removal rates for the three MDCs operated at different substrate concentrations
Figure 4.34: SEM images for biofilm morphology attached to the control anode90
Figure 4.35: SEM images for biofilm morphology attached to the anode in MDC 190
Figure 4.36: SEM images for biofilm morphology attached to the anode in MDC 291
Figure 4.37: SEM images for biofilm morphology attached to the anode in MDC 391
Figure 4.38: Desalination efficiencies over the operation cycles for the three MDCs operated at different substrate concentrations92
Figure 4.39: Desalination rates over the operation cycles for the three MDCs operated at different substrate concentrations93
Figure 4.40: Generated voltage and current for the three MDCs operated at $10~\Omega$ as external resistance.
Figure 4.41: Generated voltage and current for the three MDCs operated at $100~\Omega$ as external resistance.
Figure 4.42: Generated voltage and current for the three MDCs operated at $500~\Omega$ as external resistance.
Figure 4.43: Generated voltage and current for the three MDCs operated at $5000~\Omega$ as external resistance96
Figure 4.44: Generated voltage and current for the three MDCs operated at $10000~\Omega$ as external resistance.
Figure 4.45: COD removal efficiencies and rates for the three MDCs at different external resistance
Figure 4.46: Calculated CEs for the three MDCs at different external resistance98
Figure 4.47: Desalination efficiency for the three MDCs at different resistances99
Figure 4.48: Desalination rate for the three MDCs at different resistances99