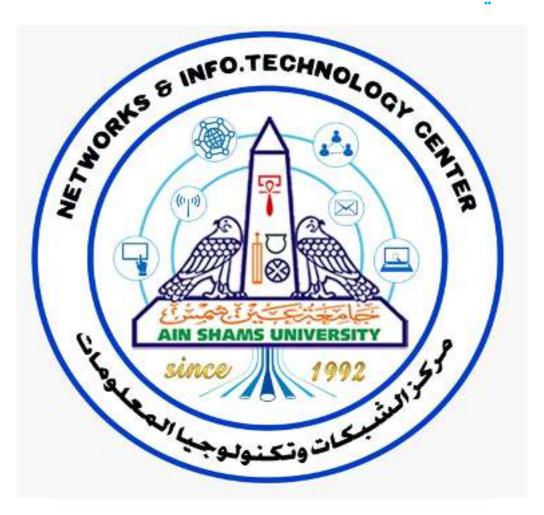


Mona Maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني



Mona Maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

NEW HYBRID TECHNIQUE FOR GEOMETRIC CORRECTION OF HIGH RESOLUTION SATELLITE IMAGERY

By

Ahmed Abdo Nasr Habib

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY
in
CIVIL ENGINEERING – PUBLIC WORKS

NEW HYBRID TECHNIQUE FOR GEOMETRIC CORRECTION OF HIGH RESOLUTION SATELLITE IMAGERY

By **Ahmed Abdo Nasr Habib**

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of **DOCTOR OF PHILOSOPHY**

in

CIVIL ENGINEERING – PUBLIC WORKS

Under the Supervision of

Prof. Dr. Zeinab Abd-Elghany Wishahy	Prof. Dr. Mohamed Shawki El-Ghazaly
Professor of Photogrammetry and Remote	Professor of Photogrammetry and Remote
Sensing	Sensing
Department of Public Works	Department of Public Works
Faculty of Engineering, Cairo University	Faculty of Engineering, Cairo University

Prof. Dr. Ayman Rashad El-Shehaby

.....

Professor of Photogrammetry and Remote Sensing Department of Survey Engineering Faculty of Engineering at Shoubra, Benha University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019

NEW HYBRID TECHNIQUE FOR GEOMETRIC CORRECTION OF HIGH RESOLUTION SATELLITE IMAGERY

By Ahmed Abdo Nasr Habib

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

CIVIL ENGINEERING – PUBLIC WORKS

Approved by the Examining Committee

Prof. Dr. Zeinab Abd-Elghany Wishahy

Thesis Main Advisor

Prof. Dr. Mohamed Shawki El-Ghzali

Advisor

Prof. Dr. Ayman Rashad El-Shahaby

Professor at Faculty of Engineering at Shoubra,
Benha University

Prof. Dr. Mahmoud Mohamed Hamed

Professor at Faculty of Engineering at Shoubra,
Benha University

External Examiner

Professor at Faculty of Engineering at Shoubra,
Benha University

Prof. Dr. Mahmoud El-Nokrashy Othman External Examiner

Professor at Faculty of Engineering, Al-Azhar University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2019 Engineer's Name: Ahmed Abdo Nasr Habib

Date of Birth: 7 / 4 / 1967 **Nationality:** Egyptian

E-mail: ahmednsr67@hotmail.com

Phone: +201007185650

Address: 26 El-Hasan St., Dokki, Giza

Registration Date: 1 / 3 / 2012 **Awarding Date:**/.2019

Degree: Doctor of Philosophy

Department: Civil Engineering - Public Works

Supervisors:

Prof. Zeinab Abd-Elghany Wishahy Prof. Mohamed Shawki El-Ghazali Prof. Ayman Rashad El-Shehaby

(Professor, Photogrammetry and Remote Sensing - Faculty of Engineering at Shoubra - Benha University)

Examiners:

Prof. Mahmoud Mohamed Hamed (External examiner)
(Professor, Photogrammetry and Remote Sensing - Faculty of Engineering at Shoubra - Benha University)
Prof. Mahmoud El-Nokrashy Othman (External examiner)
(Professor, Photogrammetry and Remote Sensing - Faculty of Engineering - Al-Azhar University)
Prof. Zeinab Abd-Elghany Wishahy (Thesis main advisor)

Prof. Mohamed Shawki El-Ghazali (advisor) Prof. Ayman Rashad El-Shehaby (advisor)

(Professor, Photogrammetry and Remote Sensing - Faculty of Engineering at Shoubra – Benha University)

Title of Thesis:

New Hybrid Technique for Geometric Correction of High Resolution Satellite Imagery

Key Words:

Remote Sensing; High Resolution Satellite; Rational Function Model; Artificial Neural Networks; Geometric Correction.

Summary:

An Artificial neural networks (ANN) MATLAB software was developed with multilayer perceptron (MLP) technique to derive the geometric correction coefficients. The Artificial neural network training was done using the deduced control points in a way that, image coordinates were used as input and the ground coordinates as output till reaching stabilization state of the neural network parameters. A change in the nature of the distribution of errors has been noted, as a result of the numerical stability of the neural network. A new technique was developed using neural networks to predict the earth coordinates of a set of new regular image points in the same area of the deduced random point's data set and a new DDSM model. The RFM model was reused by implementing regularized points to reach the final model coefficients between satellite imagery space domain and ground space domain. The new technology improved accuracy by reducing the planimetric error by 39% and the elevation error by 45% of the error recorded when using traditional RFM model.

Disclaimer

I hereby declare that this thesis is my own original work and that no part of it has been submitted for a degree qualification at any other university or institute.

I further declare that I have appropriately acknowledged all sources used and have cited them in the references section.

Name: Ahmed Abdo Nasr Habib Date: / / 2109

Signature:

Acknowledgments

First of all, I would like to express my profound gratitude to my supervisors Prof. Shawki El-Ghazali, Prof. Zeinab Wishahy and Prof. Ayman El-Shehaby for their endless hours of help, suggestions, ideas and advice during the development of this thesis.

This research was achieved with the support of the Egyptian Military Survey Department; Where I got full support from my colleagues and full access to the required equipment and digital aerial camera data.

I would like to thank my mother and my brother for their constant love, support and encouragement to pursue my goals.

A special thanks to the Unknown Soldier, my wife, for taking the full responsibility of our family during seven years of work and encouraging me to complete the work even with the difficulties we faced.

Table of Contents

DISCLA	AIMER	I
ACKNO	OWLEDGMENTS	II
TABLE	OF CONTENTS	III
LIST O	F TABLES	VI
LIST O	F FIGURES	VII
NOME	NCLATURE	VIII
ABSTR	ACT	IX
СНАРТ	TER 1: INTRODUCTION	1
1.1.	Background	1
1.2.	RESEARCH MOTIVATION	2
1.3.	RESEARCH OBJECTIVES	2
1.4.	RESEARCH PLAN AND METHODOLOGY	
1.5.	THESIS STRUCTURE	
СНАРТ	TER 2 : LITERATURE REVIEW	5
2.1.	CHARACTERISTICS OF HIGH RESOLUTION SATELLITE IMAGERY	5
2.1.1.	Satellite Imagery Data	
2.1.2.	Satellite Orbits	
2.1.3.	Classification of Satellite Orbits	
2.1.4.	Characteristics of Satellite Orbits	7
2.1.5.	Types of Sensors	7
2.2.	QUICKBIRD SATELLITES	9
2.2.1.	QuickBird Scanner Sensor Characteristics	9
2.2.2.	QuickBird Orbit Geometry	9
2.2.3.	QuickBird Spatial and Temporal Resolution	10
2.2.4.	QuickBird Image Collection Modes	11
2.2.5.	QuickBird Basic Product Description	11
2.2.6.	QuickBird Product Accuracy	11
CHAPT	TER 3: GEOMETRIC CORRECTION MODELS	13
3.1.	Introduction	13
3.2.	MATHEMATICAL MODEL CLASSES	13
3.2.1.	Physical Model	13
3.2.2.	Generalized model	13
3.2.3.	Mathematical Models Used in QuickBird Image Correction	14
3.2.4.	Polynomial Models	
3.2.5.	Projective Model	
3.2.6.	Rational Function Model	
327	Rational Polynomial Coefficients (RPC)	17

3.2.8.	Refined Rational Function Model	18
3.2.9.	3D Affine Transformation Model	18
3.2.10.	Camera Parametric Model	
3.3.	ARTIFICIAL NEURAL NETWORK MODEL	19
3.3.1.	Advantages of Artificial Neural Networks	20
3.3.2.	ANN Function Classification	20
3.3.3.	Neuron Fundamentals	21
3.3.4.	Neuron activation Function (φ)	
3.3.5.	Neural Networks Design and Architecture	23
3.3.6.	Network Learning Process	
3.3.6.1	Supervised Learning Technique	
3.3.6.2	Back-Propagation Training Algorithms	26
CHAPT	ER 4: EXPERIMENTAL WORK AND DATA PROCESSING	29
4.1.	STUDY AREA CHARACTERISTICS	
4.2.	DATA PREPARATION AND SPECIFICATIONS	29
4.2.1.	Satellite Image Specifications	32
4.2.2.	Dataset Preparation	32
4.2.3.	Pre-Field Work	32
4.2.4.	Field Work	34
4.2.5.	Post Field Work	
4.3.	DIGITAL IMAGE MATCHING	39
4.4.	AUTOMATIC GROUND CONTROL EXTRACTION (AGE)	39
4.5.	IMPLEMENTATION OF CONVENTIONAL GEOMETRIC CORRECTION MOD	DELS40
4.5.1.	Implementation of Terrain-Independent Model	40
4.5.2.	Implementation of Terrain-dependent Model	40
4.5	.2.1. Implementation of 2D Geometric Correction Models	41
	42	
4.5	.2.2. Implementation of 3D Geometric Correction Models	46
CHAPT	ER 5 : IMPLEMENTATION OF HYBRID MODEL APPROACH	51
5.1.	PREDICTION OF MODEL PARAMETERS USING ARTIFICIAL NEURAL N	
Modei	L (ANN)	
5.2.	ANN INPUT OUTPUT SELECTION	51
5.3.	ANN DATA PREPARATION AND CLASSIFICATION	52
5.4.	ANN Model Design	52
5.5.	IMPLEMENTATION OF ANN IN GEOMETRIC CORRECTION	54
5.6.	GEOMETRIC CORRECTION USING HYBRID NON-CONVENTIONAL MODI	ELS 56
CHAPT	ER 6: RESULTS AND ANALYSIS	63
6.1.	VALIDATION AND TESTING OF THE ANN MODEL TRAINING	63
6.2.	ANN GEOMETRIC CORRECTION RESULTS	
6.3.	Hybrid ANN and RFM Model Results	
	CHAPTER 7: CONCLUSIONS, RECOMMENDATIONS AND F	
WUKK.		71
7 1	CONCLUSIONS	71

в- 7.2.	GEOMETRIC CORRECTION USING HYBRID MODELRECOMMENDATIONS FOR FUTURE WORK	73
APPENDIX A: MATLAB NEURAL NETWORKS SOFTWARE FOR GEOMETRIC CORRECTION PARAMETERS MAPPING79		

List of Tables

Table 2.1: Characteristics of QuickBird Satellite Sensor	.10
Table 3.1: Minimum GCP's number required for different RFM polynomial order	.18
Table 3.2: Camera Physical Model Distortions	
Table 3.3: Back-propagation training algorithms for Feedforward Neural Network	.28
Table 4.1: Topographic Map of the Study Area	
Table 4.2: Leica ADS80 Airborne Digital Sensor Specifications	.34
Table 4.3: Control and Check Points Description	
Table 4.4: Check Points Errors and Root Mean Square Error	
Table 4.5: Accuracy Assessment of Terrain-Independent Models	.40
Table 4.6: Minimum Number of GCPs required by 2D polynomial models	.41
Table 4.7: Accuracy Assessment of Terrain-Dependent 2D Models Using 8 GCPs	
Table 4.8: Accuracy Assessment of Terrain-Dependent 2D Models Using 14 GCPs	.45
Table 4.9: Accuracy Assessment of Terrain-Dependent 2D Models Using 33 GCPs	.45
Table 4.10: Accuracy assessment of 3D Affine Transformation Model Using differen	ıt
number of GCPs	
Table 4.11: Accuracy assessment of 2nd order 3D Polynomial Transformation Model	
Using different number of GCPs.	.47
Table 4.12: Accuracy Assessment of Check Points Errors Using Terrain-Dependent	
RFM Model	
Table 5.1: ANN input /output dataset segments and periods	
Table 6.1: ANN resultant position accuracy	
Table 6.2: Accuracy Assessment of Check Points Errors Using ANN Model	
Table 6.3: Accuracy Assessment of Check Points Errors Using Hybrid Artificial Neur	
Networks and RFM Model on 46 Gridded point	
Table 6.4: Accuracy Assessment of Check Points Errors Using Hybrid Artificial Neur	
Networks and RFM Model on 76 Gridded point	
Table 6.5: Accuracy Assessment of Check Points Errors Using Hybrid Artificial Neur	
Networks and RFM Model on 137 Gridded point	
Table 6.6: Accuracy Assessment of Check Points Errors Using Hybrid Artificial Neu	ral
Networks and RFM Model on 259 Gridded point	.68
Table 6.7: Accuracy Assessment of Check Points Errors Using Hybrid Artificial Neur	
Networks and RFM Model on 632 Gridded point	.68

List of Figures

Figure 2.1: Types of Satellite Orbits	6
Figure 2.2: Whiskbroom Scanner (Cross-track Scanner)	8
Figure 2.3: Pushbroom Scanners (Along-track Scanner)	8
Figure 3.1: Non-Linear Model of Neuron (Hertz, 2018)	23
Figure 3.2: Single-hidden-layer feedforward artificial neural network	24
Figure 3.3: Supervised ANN Block Diagram	26
Figure 4.1: Fayed and Abu-Sultan QuickBird Image	30
Figure 4.2: Topographic Map of The Study Area.	31
Figure 4.3: Leica ADS80 Push-broom Sensor CCD Layout	33
Figure 4.4: Picture of an Observed Point on a Fence Corner in the Urban Area	36
Figure 4.5: Fayed CORS Station, 36 Control and 9 Check points Distributed on AI	OS80
Orthophoto	38
Figure 4.6: Fayed CORS Station, 8 Control and 9 Check Points Distributions	42
Figure 4.7: Fayed CORS Station, 14 Control and 9 Check Points Distributions	43
Figure 4.8: Fayed CORS Station, 33 Control and 9 Check Points Distributions	44
Figure 4.9: QuickBird Satellite Data Refined RFM Geometric Correction Procedur	e
Workflow	49
Figure 5.1: Design of the Four-Layered Feed-Forward ANN	52
Figure 5.2: ANN Flow Diagram	54
Figure 5.3: Input Dataset in the Designed Feed-Forward ANN	55
Figure 5.4: Workflow of the ANN Geometric Correction Procedure	55
Figure 5.5: Workflow of the Hybrid Geometric Correction Procedure	56
Figure 5.6: Distribution of the 46 Gridded Points on the QuickBird Satellite Data	57
Figure 5.7: Distribution of the 76 Gridded Points on the QuickBird Satellite	58
Figure 5.8: Distribution of the 137 Gridded Points on the QuickBird Satellite D	59
Figure 5.9: Distribution of the 259 Gridded Points on the QuickBird Satellite	60
Figure 5.10: Distribution of the 632 Gridded Points on the QuickBird Satellite Data	a61
Figure 6.1: NNT 100 Seconds Trained Resultant Position Residuals	64
Figure 6.2: NNT 60 Seconds Tested Resultant Position Residuals	64
Figure 6.3: NNT 185 Seconds Validated Resultant Position Residuals	64

Nomenclature

HRS High Resolution Satellite RFM Rational Function Model DSM Digital Surface Model

DDSM Dense Digital Surface Model
ANN Artificial Neural Networks
MLP Multi-Layer Perceptron
GCPs Ground Control Points

GIS Geographic Information Systems RPCs Rational Polynomial Coefficients

CCD Charged Coupled Device **GSD** Ground sampling distance **GPS** Global Positioning System **IMU** Inertial Management Unit **Continuous Reference Stations CORS ESA** Egyptian Survey Authority Universal Transverse Mercator **UTM** Root Mean Square Error **RMSE**

AGE Automatic Ground Control Extraction

 $\begin{array}{lll} \Delta E & Delta \ Easting \\ \Delta N & Delta \ Northing \\ SD & Slandered \ Deviation \\ Err-X & Error \ in \ X \ Coordinate \\ Err-Y & Error \ in \ Y \ Coordinate \end{array}$

Abstract

This thesis introduces a new technique to improve the geometric correction of high resolution satellite (HRS) imagery data in order to achieve better geometric accuracy of extracted information.

The research begins by matching the satellite images to be adjusted with an orthorectified imagery data produced from digital aerial photogrammetry works of the same area in order to deduce dense control points. The corresponding point heights were corrected using a dense digital surface model (DDSM).

The traditional geometric correction was done using the commonly used Rational Function Model (RFM), implementing the previously deduced random distributed points. Although the RFM model is geometrically stable, there is a relative error due to the numerical instability resulting from the irregular distribution of control points.

An Artificial neural networks (ANN) MATLAB software was developed with multilayer perceptron (MLP) technique to derive the geometric correction coefficients. The Artificial neural network training was done using the deduced control points in a way that, image coordinates were used as input and the ground coordinates as output till reaching stabilization state of the neural network parameters. A change in the nature of the distribution of errors has been noted, as a result of the numerical stability of the neural network.

A new technique was developed using neural networks to predict the earth coordinates of a set of new regular image points in the same area of the deduced random point's data set and a new DDSM model.

The RFM model was reused by implementing regularized points to reach the final model coefficients between satellite imagery space domain and ground space domain.

The new technology improved accuracy by reducing the planimetric error by 39% and the elevation error by 45% of the error recorded when using traditional RFM model.

The use of the designed ANN software as an intermediate step in the produced hybrid model has solved two significant problems which were, the necessity of well-distibuted control points as well as, providing another source of elevation data.

The produced satellite orthophoto can be used in updating maps of scale between 1:2500 and 1:5000.