Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

Mansoura University
Faculty of Engineering
Electrical Power & Machines Dept.

B18353

OVERVOLTAGES IN POWER SYSTEMS

By

Eng. Mohamed Mahfouz Aly Mahfouz

(B. Sc.(1992) in Electrical Engineering)

Thesis Submitted in Partial Fulfillment of The Requirements For The degree of Master (M.Sc.)

In Electrical Engineering

Supervisors

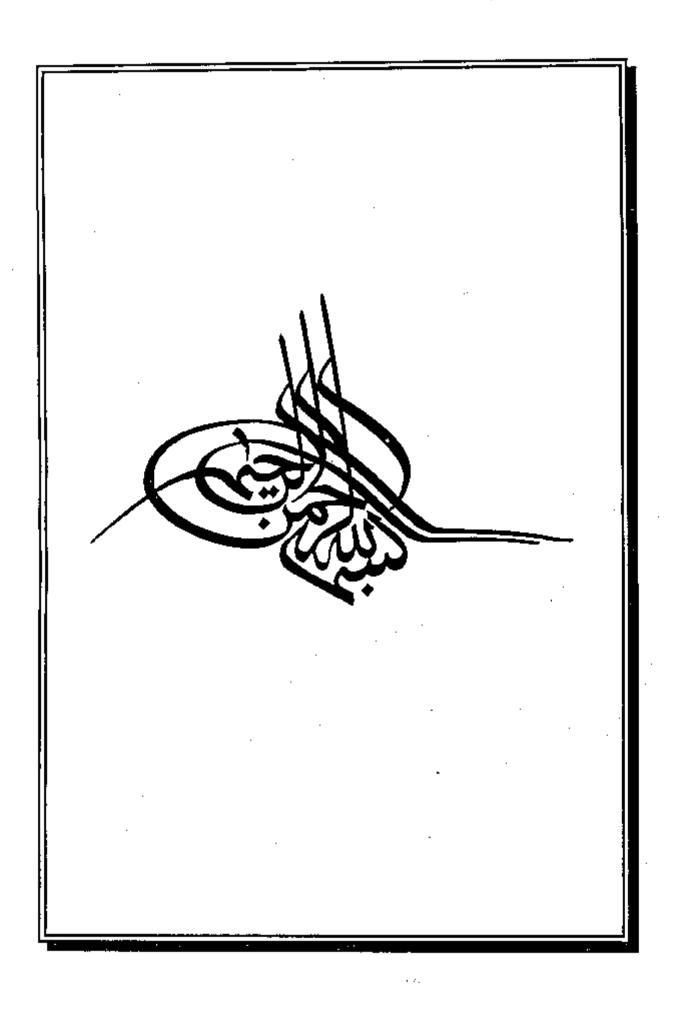
Prof. Dr.

A. A. Attia

Electrical Power & Machines Dept. Faculty Of Engineering Mansoura University Dr.

Kamel Yassin Aly Moustafa

General manager of operations planning National Energy control center Egyptian Electricity Authority(EEA)


Dir.

El-Hosaini Abd-Raboh

Electrical Power & Machines Dept.

Faculty of Engineering

Mansoura University

Ī

A section 1

Mansoura University Faculty of Engineering Electrical Power & Machines Dept.

B18353

OVERVOLTAGES IN POWER SYSTEMS

By

Eng. Mohamed Mahfouz Aly Mahfouz

(B. Sc.(1992) in Electrical Engineering)

Thesis Submitted in Partial Fulfillment of The Requirements

For The Master Degree (M.Sc.)

Ιn Electrical Engineering

Under The Supervision of

Supervision	Position	Signature
Prof.Dr. A . A. Attia	Electrical Power and Machines Dept. Faculty of Engineering	Attea A.A.
Dr. Kamel Yassin Aly	Mansoura University General Manager of Operations Planning, National Energy Control Center	gree -
	Egyptian Electicity Authority Electrical Power and Machines Dept. Faculty of Engineering	Abd-Rabol
Dr.EL-Hosaini Abd-Raboh	Mansoura University	<u> </u>

Approval Sheet

STUDENT NAME: Mohamed Mahfouz Aly Mahfouz
THESIS TITLE: OVERVOLTAGES IN POWER SYSTEMS

Thesis Defence Date: 23-12-1995

Thesis Evaluation:

The Comitte's Members:

Name	Position	Signature
Prof.Dr.Ahmed Abdul -Maguid	Electrical Power and Machines Dept. Faculty of Engineering Mansoura University	32 P
Prof.Dr.S.S.El-Dessouky	Electrical Power and Machines Dept. Faculty of Engineering Suez Canal University, Port Said	S.S. Eldemanh
Prof,Dr. A . A. Attia	Electrical Power and Machines Dept. Faculty of Engineering Mansoura University	Allia A.A.
Dr. Kamel Yassin Aly	General Manager of Operations Planning, National Energy Control Center Egyptian Electicity Authority	200

ABSTRACT

Study of overvoltages in power systems are important specially in Extra and Ultra High Voltage systems (EHV& UHV). The study in such systems are necessary for reliable design and economic operation.

Power systems are subjected to many forms of transient phenomena brought about essentially by sudden changes in the steady state values of voltages or currents. Such changes may be the result of atmospheric disturbances such as lighting or result from some operating conditions such as switching. These disturbances cause overvoltages surges which are different in their magnitude, shape and duration. Overvoltages are classified to three main types, transient, steady state, and resonance overvoltages.

The calculation of Transient phenomena in power systems is not simple. This is because that the power system itself consists of different elements whose characteristics vary widely. Some elements are distributed and/or lumped and may be mutually coupled, while others such as sources are linear and/or nonlinear.

This thesis studies resonance overvoltages in Egyptian EHV system (500 kV). Its causes and its effects on power system elements. The study suggested three solutions to avoid resonance overvoltages due to shunt reactors, which are essential elements in high voltage networks.

The suggested solutions are:

- 1- The optimum capacity of reactors are less than 100 MVAR or greater than 200 MVAR.
- 2- The optimum location of the reactors is at the substation bus bar.
- 3- new technique which this thesis presents by setting operation policies between the reactor and it's line circuit breakers.

The study also carried out for the future Egyptian EHV system to check the reasonability of the suggested solutions

This thesis studies also the steady state overvoltages in Egyptian EHV system due to loading conditions and Ferranti effects.

The study presents an overvoltages automatics setting to protect the system against this type of overvoltages.

The study also carried out for the future Egyptian EHV system to check the reasonability of the suggested setting.

The study show that the suggested setting is satisfied for the existing and the future system.

Electro-Magnetic Transient Program (EMTP) is used for such studies. EMTP is a widely used program around all the world to simulate the electric power networks. It solves the algebraic, ordinary ,and partial differential equations that are associated with the interconnection of the different power system elements.

ACKNOWLEDGMENT

It is through God's grace that the present work could be fulfilled.

I wish to express my sincere gratitude to Prof. Dr. Attia Abd El-Ghaney, Electrical power and Machines Department, Mansoura University, Dr. Kamel Yassin, General Manager of Operations Planning Department in the National Energy Control Center, EEA, Dr. El-Hosaini Abd-Raboh, Electrical Power and Machines Department, Faculty of Engineering, Mansoura University for their constructive supervision, generous assistance and kind help.

My best thanks to all staff members of Electrical Power and Machines Department, *Mansoura University*, for their continuos help during the course of this work.

My best thanks to Prof *Dr. Fathi Abd El-Kader*, Electric Power and Machines Department, Faculty of Engineering Shebeen, *Monofia University*, Prof *Dr. Ing. Fathi Youssef*, electric power and Machines Department, *Mansoura University*, *Dr. Sobhy Abd El-Kader*, Electrical Power and Machines Department, *Mansoura University*, for their continuos encouragement and their great support.

My best thanks to my friends Eng. Mohamed Samy, Eng. Ahmad Hasan, Eng. Mohamed Rashed, and Eng. Khalid Abd El-Moemen for their continuos help during the course of this work.

My best thanks to all staff of operation planning department in the National EnergyControl Center specially my friends *Eng. Hazem Hanafi*, and *Eng. Hesham Abd El-Hassib* for their continuos help during the course of this work.

Last not last, special thanks to my family, for her great encouragement and support.

CONTENTS

CHAPTER 1: INTRODUCTION	
1.1 Historical Back Ground	1
1.2 Objectives of the Present Thesis	3
CHAPTER 2: OVERVOLTAGES IN POWER SYSTEMS	
2.1 Introduction	7
2.2 Types Of Overvoltages	7
2.2.1 Transient Overvoltages	8
2.2.1.1 External overvoltages	
2.2.1.2 Switching overvoltages	
2.2.2 Steady State Overvoltages	16
2.3 How To Control Overvoltages	1.7
2. Phase - Controlled Closure	
3. Drainage of Trapped Charges	17
4. Shunt Reactors	18
CHAPTER 3: METHODS OF ANALYSIS OF	
ELECTROMAGNETIC TRANSIENTS	
3.1 Fourier Transformation Method	20
3.2 Modal Analysis Of A Uniform N-Phase Line	21
3.3 Lattice - Diagram Method	22
3.4 Z-Transform Method	23
3.5 Electro Magnetic Transients Program (EMTP)	24
3.5.1 The EMTP Procedure	.,
3.5.2 Modeling of System Elements in EMTP	34

CHAPTER 4: RESONANCE OVERVOLTAGES IN EXTRA HIGH VOLTAGE (EHV) NETWORKS

4.1 Introducti	оп	36
	e due to switching of compan-sated transmission	. 37
	Effects	
4.3.2 Fre	me Domain (V, t)equency Domain (V, f)	42 43
	e overvoltages in the egyptian EHV network	
	yptian EHV Network	
	gorithm of Simulation	
4.4.3 Lo	ad Flow of the Case Study	49
4.4.5 Ca	se Study Results	51
	void Resonance	
	ging the Reactor Capacity(MVAR)	
	ating the Reactor	
3. Settin	g an Operation Policies Between the Reactor and Its	
	C,B's	55
	Overvoltage In The Future Egyptian EHV	

4.6.1 Ne	twork Description	61
4.6.2 Ca	se Study Load Flow	61
4.0.3 Ca	se Study Results	64
	w to Avoid Resonance in New Egyptian EHV	
	item	
4.7 Analysis O	of The Results	69
CHAPTER 5 : OVE	RVOLTAGE AUTOMATICS SETTING	
5.1 Egyptian F	Extra high Voltage Network	71
5.2 Operation	Condition Automatics in Egyptian EHV System	71
	te Overvoltage Due to Loading Conditions	
5.3.1 Ma	eximum Evening Loading Case	74
5.3.2 Ma	iximum Day loading Case	76
5.3.3 Mir	nimum Day Loading Case	78

5.4 Ferranti Effect Overvoltages80	0
5.4.1 Forward Direction Overvoltages Caes	
5.4.2 Backward Direction Overvoltages Caes	7
5.4.3 Overvoltage Automatics	4
5.4.4 Overvoltage Automatics Setting for Egyptian EHV	
System96	6
5.5 Reasonability of Settings10	00
5.5.1 For Maximum Evening Condition	00
5.5.2 For Maximum Day Condition10	00
5.5.3 For Minimum Day Condition	01
5.6 Analysis of the Case Study Results	04
5.7 Overvoltage Automatics for the Future Egyptian EHV	
Network	05
5.7.1 Network Description	
5.7.2 Steady State Overvoltages due to Loading Conditions 10	
5.7.3 Steady State Overvoltage due to Ferranti Effect	
5.7.4 Overvoltage Automatics Setting for The Future	
Egyptian EHV System13	16
5.8 Reasonability of Setting12	22
CHAPTER 6: CONCLUSION AND RECOMMENDATIONS	
6.1 Conclusions	25
Resonance Overvoltages in EHV Systems	25
II. Steady State Overvoltages in EHV Systems	25
6.2 Recommendations	26
REFERENCES1	2 7
A DREADLY 1	31

CHAPTER (1)