

Mona Maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Mona Maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

PHYTOCHEMICAL AND BIOLOGICAL STUDY ON CERTAIN PLANTS BELONGING TO FAMILY ROSACEAE

Thesis submitted to
Faculty of Pharmacy
Ain Shams University
In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy in Pharmaceutical Sciences
(Pharmacognosy)

Ву

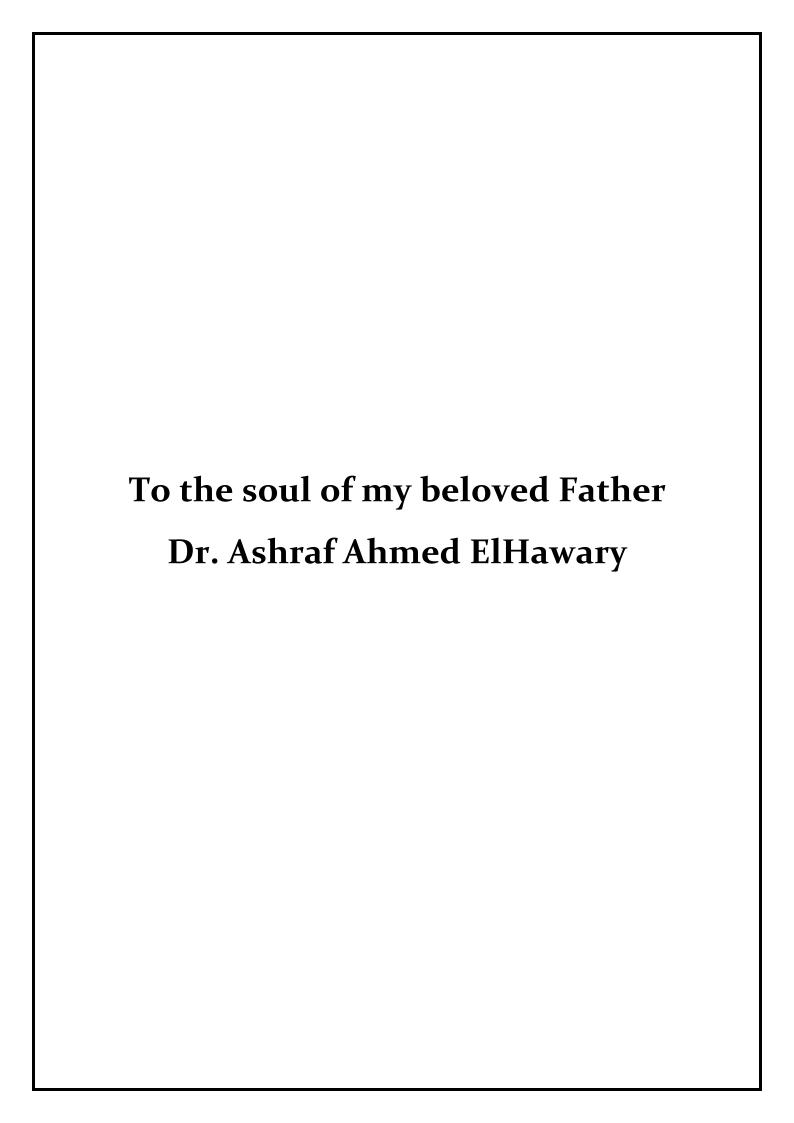
Esraa Ashraf Ahmed ElHawary

B. Pharm. Sci.
Faculty of Pharmacy, Ain Shams University, 2010
M. Pharm. Sci.
Faculty of Pharmacy, Ain Shams University, 2015

Under Supervision of

Prof. Abdel Nasser Badawi Singab, PhD

Professor of Pharmacognosy, Chairman of Center for Drug Discovery, Research and Development, Faculty of Pharmacy, Ain Shams University


Prof. Rola Milad Labib, PhD

Professor of Pharmacognosy,
Vice Dean of Community Services and Environmental Development,
Faculty of Pharmacy,
Ain Shams University

Assoc. Prof. Nada Mohamed Mostafa, PhD

Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University

> Department of Pharmacognosy Faculty of Pharmacy Ain Shams University Abbasia, Cairo, Egypt 2022

First, I thank "**Allah**" for granting me the power to accomplish this work.

I would like to express my deepest gratitude, sincere and profound appreciation to the following people who significantly contributed to the work done in this thesis:

I would like to express my deepest thanks to **Prof. Abdel Nasser Badawi Singab**, Professor of Pharmacognosy, Head of Center of Drug Discovery, Research and Development, Faculty of Pharmacy, Ain Shams University for suggesting the thesis idea, plants, and work scheme. I am greatly indebted for his valuable scientific supervision, constructive advice and continuous guidance throughout the work. For being a true role model by all means and for being a second father and mentor. He guided me immensely throughout the work and during the revision of the thesis. His valuable time and big effort are greatly appreciated. I would like to thank him for his continued support by providing all the scientific equipments from the Center of Drug Discovery, Research and Development for our benefit.

My deepest gratitude and appreciation are expressed to **Prof. Rola Milad Labib**, Professor of Pharmacognosy, Vice Dean for Community Services and Environmental Development, Faculty of Pharmacy, Ain Shams University, for her divine support, constructive criticism, scientific supervision and follow up throughout the work. I would like to thank and appreciate all her efforts and guidance.

I am also greatly indebted to **Assoc. Prof. Nada Mohamed Mostafa**, Associate Professor of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, for providing continuous scientific supervision and follow up throughout the work and for her support and constructive criticism.

Acknowledgement

I am also greatly indebted to Assoc. Prof. Ahmed Zeinhom Shehata, Associate

Professor of Medical Entemology, Faculty of Science (Boys), Al-Azhar University, for his

guidance and hard work through the insecticidal part of this thesis and for providing

continuous scientific supervision and follow up. I would like also to thank Dr. Mostafa

Mokhtar, Lecturer of Medical Entemology, Faculty of Science (Boys), Al-Azhar

University for his support during the insecticidal part.

I would also like to thank my dear Professors, Associate professors, Lecturers,

colleagues and to all the workers at the Faculty of Pharmacy, Ain Shams University for

their help and support during this work.

Finally, my deepest everlasting thanks and appreciation are for my beloved parents,

Dr Ashraf ElHawary (may Allah bless his soul) and Dr Nagwa Mohamed for their

continuous support and encouragement throughout my life. I would like to thank my

beloved husband Eng. Mohamed Essa and my little angel Laila and my sweet niece

Mariam for their continuous love, support and encouragement. I would like also to thank

my siblings; Eng. Ahmed ElHawary, Ms Aya ElHawary and Ms Asmaa ElHawary.

Especial thanks goes to my second sister **Yousra ElKhodary**, my brother's wife, for being

always my beloved and supporting sister.

والحمد لله رب العالمين

Esraa Ashraf Ahmed ElHawary

List o	f figures
List o	f tables
List o	f abbreviations
Intro	ductionduction
Revie	w of literature
Famil	y Rosaceae
	hytochemical constituents
	olk medicinal uses
3 . B	iological activities
	nomy
	rial, apparatus and methods
1. N	Saterial
	pparatus
	lethods
	: Cultivation and genetic characteristics of selected Rosa species family Rosaceae
	pter 1: Cultivation of selected <i>Rosa</i> species family Rosaceae
	oter 2: Genetic characteristics of selected Rosa species family Rosaceae
	I: Phytochemical investigation of selected Rosa species family Rosaceae
	ter 1: Phytochemical screening of selected Rosa species and determination of
their	total phenolic and total flavonoid contents
	Results
1.	Phytochemical screening of R. banksiae var. banksiae Ait. (RBW), R. polyantha Thunb. 'orange fairy' (RPO) and R. polyantha Thunb. 'white fairy' (RPW) aerial
2.	parts Determination of total phenolic and total flavonoid contents of RBW, RPO and RPW (aerial parts and flowers) 70% methanol extracts
	ter 2: Extraction and isolation of phytoconstituents from R. banksiae var. iae Ait. (RBW) 70% methanol extract
1.	Extraction and isolation of phytoconstituents from <i>R. banksiae</i> var. <i>banksiae</i> Ait.
1.	(RBW) 70% methanol extract
2.	Identification of the isolated compounds
	Compounds isolated from the dichloromethane (DCM) fraction of RBW aerial
2.1	parts 1. Compound 1 [28- <i>O</i> -(<i>E</i>)-Feruloyl-betulinic acid
	2. Compound 2 (Ursolic acid)
	Compounds isolated from the ethyl acetate (Eth. Ac.) fraction of RBW aerial
2.2.	
2.2	parts
	Compound 3 (Tormentic acid)
	Compounds isolated from the butanol fraction of RBW aerial parts
	1. Compound 4 (Quercetin-3-O-\beta-D-glucuronide)
_	ter 3: UPLC/MS profiling of secondary metabolites
1.	UPLC/ESI/MS ⁿ analysis of RBW, RPO and RPW aerial parts and flowers 70%
	ethanol extracts (collected samples, CS)
2.	Multivariate data analysis for the six collected <i>Rosa</i> samples (CS) using PCA, HCA
	and clustered heat map

3.	UPLC/ESI/MS ⁿ analysis of RBW, RPO and RPW aerial parts and flowers 70 % methanol extracts (PS)	111
4.	Multivariate data analysis for the six <i>Rosa</i> samples from the plant station (PS) using	111
7.	PCA, HCA and clustered heat map	123
5.	UPLC/ESI/MS ⁿ analysis of the polar fractions of RBW	125
	pter 4: Study of the essential oils and <i>n</i> -hexane extracts of selected <i>Rosa</i> species	120
	ily Rosaceae	
	Chemical composition and multivariate data analysis of the essential oils of selected	
	Rosa species (aerial parts and flowers) (collected samples, CS)	134
2.		13
	Rosa species (aerial parts and flowers) (Medicinal Plants Research Station, ASU)	
	(PS)	150
3.	Determination of the <i>n</i> -hexane extracts of the aerial parts (A) and flowers (F) of	
	selected <i>Rosa</i> species family Rosaceae	166
Part	HII: Biological study of different extracts of selected Rosa species family Rosaceae	10.
	opter 1: Antimicrobial activity of the essential oils of selected <i>Rosa</i> species family	
	aceae	17
	pter 2: Investigation of the insecticidal activity of selected <i>Rosa</i> species (aerial	
	ts and flowers) 70 % methanol and <i>n</i> -hexane extracts against <i>Culex pipiens</i> L.	
-	quito	
	Introduction	174
	Results	179
1.	Effect of tested plant extracts on different stages of <i>Culex pipiens</i>	180
2.	Effect of tested plant extracts on the reproductive potential of resulted females	200
3.	Repellent activity of tested plant extracts against <i>Culex pipiens</i> starved females	213
Gen	eral summary	22
	clusions and recommendations	232
	erences	234
	bic summary	

List of figures

Photo of Rosa polyantha 'white fairy' Thunb. shrub	1	Photo of Rosa banksiae var. banksaie shrub.	36
Medicinal Plants Research Station, Faculty of Pharmacy, Ain Shams University Cultivation of the three Rosa varieties at the Medicinal Plants Research Station, Faculty of Pharmacy, Ain Shams University			37
Cultivation of the three Rosa varieties at the Medicinal Plants Research Station, Faculty of Pharmacy, Ain Shams University		± , ,	
RAPD-PCR products for <i>R. polyantha</i> Thunb. 'white fairy' (RPW), <i>Rosa polyantha</i> Thunb. 'orange fairy' (RPO) and <i>R. banksiae</i> var. <i>banksiae</i> Ait. (RBW)		Cultivation of the three Rosa varieties at the Medicinal Plants Research Station,	
Calibration curve for gallic acid	6	RAPD-PCR products for R. polyantha Thunb. 'white fairy' (RPW), Rosa polyantha	61
Scheme showing the separation and isolation of the compounds (1-4)	_		64
Scheme showing the separation and isolation of the compounds (1-4)			
Chemical structure of compound 1 (28- <i>O</i> -(<i>E</i>)-Feruloyl-betulinic acid)			
11	9		
APT spectrum of compound 1 (28- <i>O</i> -(<i>E</i>)-Feruloyl-betulinic acid)	10	Chemical structure of compound 1 (28- <i>O</i> -(<i>E</i>)-Feruloyl-betulinic acid)	75
13	11		76
HSQC spectrum of compound 1 (28-O-(E)-Feruloyl-betulinic acid)	12		77
HMBC spectrum of compound 1 (28-O-(E)-Feruloyl-betulinic acid)	13	¹ H, ¹ H-COSY spectrum of compound 1 (28- <i>O</i> -(<i>E</i>)-Feruloyl-betulinic acid)	78
Mass spectrum of compound 1 (28- <i>O</i> -(<i>E</i>)-Feruloyl-betulinic acid)	14	HSQC spectrum of compound 1 (28- <i>O</i> -(<i>E</i>)-Feruloyl-betulinic acid)	79
Chemical structure of compound 2 (Ursolic acid) 83 18	15	HMBC spectrum of compound 1 (28-O-(E)-Feruloyl-betulinic acid)	80
18	16	Mass spectrum of compound 1 (28-O-(E)-Feruloyl-betulinic acid)	81
APT spectrum of compound 2 (Ursolic acid)	17	Chemical structure of compound 2 (Ursolic acid)	83
Mass spectrum of compound 2 (Ursolic acid)	18	¹ H-NMR spectrum of compound 2 (Ursolic acid)	84
Mass spectrum of compound 2 (Ursolic acid)	19	APT spectrum of compound 2 (Ursolic acid)	85
 ¹H-NMR spectrum of compound 3 (Tormentic acid)	20		86
23 APT spectrum of compound 3 (Tormentic acid)	21	Chemical structure of compound 3 (Tormentic acid)	88
APT spectrum of compound 3 (Tormentic acid)	22		89
 Mass spectrum of compound 3 (Tormentic acid)	23	APT spectrum of compound 3 (Tormentic acid)	90
 Chemical structure of compound 4 (Quercetin-3-O-β-D-glucuronide)	24		91
 APT spectrum of compound 4 (Quercetin-3-O-β-D-glucuronide)	25		93
 APT spectrum of compound 4 (Quercetin-3-O-β-D-glucuronide)	26	¹ H-NMR spectrum of compound 4 (Quercetin-3- <i>O</i> -β-D-glucuronide)	94
 Mass spectrum of compound 4 (Quercetin-3-O-β-D-glucuronide)	27		95
LC/ESI/MS negative ion mode spectrum of (A) R. banksiae var. banksiae Ait. (RBW-A); (B) R. polyantha Thunb. 'orange fairy' (RPO-A) and (C) R. polyantha Thunb. 'white fairy' (RPW-A) aerial parts 70 % methanol extracts (CS)	28	Mass spectrum of compound 4 (Quercetin-3- <i>O</i> -β-D-glucuronide)	96
(RBW-A); (B) <i>R. polyantha</i> Thunb. 'orange fairy' (RPO-A) and (C) <i>R. polyantha</i> Thunb. 'white fairy' (RPW-A) aerial parts 70 % methanol extracts (CS)	29	LC/ESI/MS negative ion mode spectrum of (A) R. banksiae var. banksiae Ait.	
Thunb. 'white fairy' (RPW-A) aerial parts 70 % methanol extracts (CS)			
(RBW-F), (B) R. polyantha Thunb. orange fairy (RPO-F) and (C) R. polyantha			107
(RBW-F), (B) R. polyantha Thunb. orange fairy (RPO-F) and (C) R. polyantha	30	LC/ESI/MS negative ion mode spectrum of (A) R. banksiae var. banksiae Ait.	
Thund, white fairy (NI W-1) hower /0 /0 incliand extracts (CS)		Thunb. white fairy (RPW-F) flower 70 % methanol extracts (CS)	108
PCA score and loading plots of selected <i>Rosa</i> species (A, B), HCA dendrogram of	31		
			110
Clustered heat map showing different metabolites of the six studied <i>Rosa</i> samples	32		
			111
33 LC/ESI/MS negative ion mode spectrum of (A) <i>R. banksiae var. banksiae</i> Ait.	33		
(RBW-A); (B) R. polyantha Thunb. 'orange fairy' (RPO-A) and (C) R. polyantha			
			121

34	LC/ESI/MS negative ion mode spectrum of (A) R. banksiae var. banksiae Ait. (RBW-F), (B) R. polyantha Thunb. 'orange fairy' (RPO-F) and (C) R. polyantha
	Thunb. 'white fairy' (RPW-F) flower 70 % methanol extracts (PS)
35	PCA score and loading plots of selected <i>Rosa</i> species (A, B), HCA dendrogram of
33	selected Rosa species (C) (PS)
36	Clustered heat map showing different metabolites of the six studied <i>Rosa</i> samples
30	(PS)
37	GC-chromatogram of the essential oil of <i>Rosa banksiae</i> var. <i>banksiae</i> Ait. (A)
31	Aerial parts (RBW-A), (B) Flowers (RBW-F) (CS)
38	GC-chromatogram of the essential oil of <i>Rosa polyantha</i> Thunb. 'orange fairy' (A)
30	Aerial parts (RPO-A), (B) Flowers (RPO-F) (CS)
39	GC-chromatogram of the essential oil of <i>Rosa polyantha</i> Thunb. 'white fairy' (A)
39	Aerial parts (RPW-A), (B) Flowers (RPW-F) (CS)
40	Score plot of (A) PC1 versus PC2 of the essential oils obtained from the aerial
40	1
	Loading plot for PC1 and PC2 contributing volatiles and their assignments (C)
	Dendrogram illustrates the clustering of different aerial parts and flowers essential
<i>1</i> 1	oils of selected <i>Rosa</i> species (CS)
41	Clustered heat map showing the essential oil components of the six studied <i>Rosa</i>
12	samples (CS)
42	GC-chromatogram of the essential oils of <i>Rosa banksiae</i> var. banksiae Ait. (A)
12	Aerial parts (RBW-A), (B) Flowers (RBW-F) (PS)
43	GC-chromatogram of the essential oils of <i>Rosa polyantha</i> Thunb. 'orange fairy'
4.4	(A) Aerial parts (RPO-A), (B) Flowers (RPO-F) (PS)
44	GC-chromatogram of the essential oils of <i>Rosa polyantha</i> Thunb. 'white fairy' (A)
4.5	Aerial parts (RPW-A), (B) Flowers (RPW-F) (PS)
45	Score plot of (A) PC1 versus PC2 of the essential oils obtained from of aerial parts
	and flowers of selected <i>Rosa</i> species (PS) analysed by GC/MS (n = 6) (B) Loading
	plot for PC1 and PC2 contributing volatiles and their assignments (C) Dendrogram
	illustrates the clustering of different aerial parts and flowers essential oils of
4.6	selected Rosa species (PS)
46	Clustered heat map showing the volatile components of the six studied <i>Rosa</i>
	samples (PS)
47	Percentage of (A) non-oxygenated hydrocarbons, (B) oxygenated hydrocarbons,
	(C) sesterpenes and (D) triterpenes in the six $Rosa$ samples n -hexane extracts
48	Mosquito life cycle
49	Culex pipiens mosquito life cycle
50	Culex mosquito anatomy
51	Regression line of Culex pipiens larval mortality treated with different
	concentrations of 70 % methanol extracts from RBW, RPO and RPW (flowers)
52	Regression line of Culex pipiens larval mortality treated with different
	concentrations of 70 % methanol extracts from RBW, RPO and RPW (aerial
	parts)
53	Regression line of Culex pipiens larval mortality treated with different
	concentrations of <i>n</i> -hexane extracts from RBW, RPO and RPW (flowers)
54	Regression line of <i>Culex pipiens</i> larval mortality treated with different

	concentrations of <i>n</i> -hexane extracts from RBW, RPO and RPW (aerial parts)	197
55	Half Lethal Concentration (LC ₅₀) values of 70 % methanol and <i>n</i> -hexane extracts	
	from tested plant parts against 3 rd instar larvae of <i>Culex pipiens</i>	198

List of tables

1	Reported flavonoids and their derivatives from genus Rosa	5
2	Reported phenolic acids and their derivatives from genus <i>Rosa</i>	10
3	Reported tannins from genus <i>Rosa</i>	11
4	Reported lignans from genus <i>Rosa</i>	13
5	Reported coumarins from genus <i>Rosa</i>	14
6	Reported aurones from genus <i>Rosa</i>	14
7	Reported anthocyanins from genus <i>Rosa</i>	17
8	Reported terpenoids from genus <i>Rosa</i>	18
9	Reported fatty acids from genus Rosa	22
10	Reported essential oils from genus Rosa	23
11	Antioxidant activity of different <i>Rosa</i> species	26
12	Anti-inflammatory activity of different <i>Rosa</i> species	27
13	Antimicrobial activity of different <i>Rosa</i> species	28
14	Neuroprotective activity of different <i>Rosa</i> species	30
15	Anti-epileptic activity of <i>Rosa</i> species	30
16	Cytotoxic activity of different <i>Rosa</i> species	31
17	Activity of different <i>Rosa</i> species in cardiovascular-related disorders	31
18	Hepatoprotective activity of different <i>Rosa</i> species	32
19	Activity of different <i>Rosa</i> species in arthritic disorders	32
20	Antispasmodic activity of different <i>Rosa</i> species	33
21	Preservative activity of different <i>Rosa</i> species	33
22	Anti-urease and anti-collagenase activity of different <i>Rosa</i> species	34
23	Wound healing activity of <i>Rosa</i> species	34
24	Miscellaneous activities of different <i>Rosa</i> species	34
25	Results of the phytochemical screening of R. banksiae var. banksiae (RBW), R.	
	polyantha 'orange fairy' (RPO) and R. polyantha 'white fairy' (RPW) flowers and	
	aerial parts	66
26	Results for total phenolic content for RBW, RPO and RPW (aerial parts and	
	flowers)	67
27	Results for total flavonoid content for RBW, RPO and RPW (aerial parts and	
	flowers)	69
28	Metabolites tentatively traced through tandem mass spectrometry (LC/ESI/MS ⁿ) from	
	selected Rosa species (CS)	103
29	Metabolites tentatively traced through tandem mass spectrometry (LC/ESI/MS ⁿ)	
	from selected <i>Rosa</i> species (PS)	115
30	UPLC/MS tentatively identified metabolites form the polar fractions (ethyl acetate	
	and butanol) of <i>R. banksiae</i> var. <i>banksiae</i> aerial parts	128
31	Volatile constituents identified from the aerial parts and flowers essential oils of	
	selected Rosa species (CS)	140
32	Volatile constituents identified from the aerial parts and flowers essential oils of	
-	selected <i>Rosa</i> species from ASU Medicinal Plants Research Station (PS)	155
33	Summary of identified compounds of the total n -hexane extracts from the aerial parts	
	and flowers of selected <i>Rosa</i> species	167
34	Antimicrobial activity of the essential oils of the aerial parts and flowers of selected	

35	Rosa species (CS)	172
33	pipiens	181
36	Effect of 70 % methanol extract of RPO-F on some biological aspects of <i>Culex</i>	
27	pipiens	182
37	Effect of 70 % methanol extract of RPW-F on some biological aspects of Culex	102
38	Relative efficiency of 70 % methanol extract from RBW, RPO and RPW (flowers)	183
•	against Culex pipiens larvae	183
39	Effect of 70 % methanol extract of RBW-A on some biological aspects of <i>Culex</i>	105
40	Effect of 70 % methanol extract of RPO-A on some biological aspects of <i>Culex</i>	185
	pipiens	186
41	Effect of 70 % methanol extract of RPW-A on some biological aspects of <i>Culex</i>	
	pipiens	188
42	Relative efficiency of 70 % methanol extract from RBW, RPO and RPW (aerial	100
	parts) against Culex pipiens larvae	188
43	Effect of <i>n</i> -hexane extract of RBW-F on some biological aspects of <i>Culex</i>	100
	pipiens	190
44	Effect of <i>n</i> -hexane extract of RPO-F on some biological aspects of <i>Culex</i>	
	pipiens	191
45	Effect of <i>n</i> -hexane extract of RPW-F on some biological aspects of <i>Culex</i>	
	pipiens	192
46	Relative efficiency of <i>n</i> -hexane extracts from RBW, RPO and RPW (flowers)	100
	against Culex pipiens larvae	192
47	Effect of <i>n</i> -hexane extract of RBW-A on some biological aspects of <i>Culex</i>	104
40	pipiens	194
48	Effect of <i>n</i> -hexane extract of RPO-A on some biological aspects of <i>Culex</i>	105
40	pipiens	195
49	Effect of <i>n</i> -hexane extract of RPW-A on some biological aspects of <i>Culex</i>	100
5 0	pipiens	196
50	Relative efficiency of <i>n</i> -hexane extracts from RBW, RPO and RPW (aerial parts)	107
~ 1	against Culex pipiens larvae.	197
51	Effect of RBW-F 70 % methanol extract on reproductive potential of <i>Culex pipiens</i>	201
5 0	resulted females.	201
52	Effect of RPO-F 70 % methanol extract on reproductive potential of <i>Culex pipiens</i>	202
<i>5</i> 2	resulted females.	202
53	Effect of RPW-F 70 % methanol extract on reproductive potential of <i>Culex pipiens</i>	202
<i>5</i> 1	resulted females.	203
54	Effect of RBW-A 70 % methanol extract on reproductive potential of <i>Culex pipiens</i>	204
55	resulted females.	204
55	Effect of RPO-A 70 % methanol extract on reproductive potential of <i>Culex pipiens</i>	205
56	resulted females	205
56	Effect of RPW-A 70 % methanol extract on reproductive potential of <i>Culex pipiens</i>	206
57	resulted females	206
JI	Litect of KD W-1 n-hexage exhact of reproductive potential of Culex Diplens	