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Abstract

Melanoma is a sort of skin disease that represents more than seventy-
five percent of all skin diseases connected to all fatalities. Nonetheless,
doctors have demonstrated that the probability rate of patients improves
radically with early analysis and diagnosis. This motivated researchers to seek
automated techniques that facilitate early diagnosis of skin cancer. Skin lesion
segmentation is a significant advance in the analysis and the resulting
treatment of melanoma. Automatic lesion segmentation is of major interest
for early detection and treatment of skin cancer, because it provides better
accuracy and speed, compared to manual analysis. Lately, deep neural
networks have provided better results for medical image segmentation,
compared to classical approaches based on machine learning.

In this thesis, first an extensive a review of existing deep network
architectures that have been suggested to segment skin lesions, pre-processing
and post-processing methods with the available datasets that can be used for
research in this area, also presented a comparison between the results of
different methods used for skin lesion segmentation showing the strengths and
weaknesses of each method.

In this thesis, checked the applicability of deep learning approaches: U-
NET, Deep RESU-NET, VGG16UNET, U-Net DENSENET121, U-Net
EfficientNet-BO, Deeplabv3plus, Inception-ResNet-v2-unet,
mobilenetv2_unet, Resnet50 unet, and vggl9 unet to the segmentation of
skin lesions to detect lesion boundaries by developing deep learning models
that have never been used for skin lesions and producing comparative results
that will help detect melanoma and successfully define the lesion boundaries.



The architectures have been trained on four different datasets. The
architectures were trained on the original data set, and then the four datasets
were pre-processed to be used for training the architectures. Utilized different
kinds of original image transformations, such as center crop, random rotation
90, grid distortion, horizontal flip, and vertical flip which resulted in an
increasing number of images corresponding to the training set. Utilized
different standard evaluation metrics such as Jaccard Index, accuracy, recall,
precision, and F-measure to evaluate the acquired results. The results show
that out of these architectures, the U-Net DENSENET121 architecture
outperforms with segmentation Accuracy as high as 97.23% and F1 as 95.96%
and Jaccard as 92.42% and Recall as 96.33% in the PH2 dataset. In general,
the architecture of U-Net DENSENET121 showed a significant superiority
over the rest of the architectures. Even when comparing the architectures that
we used in this study with the rest of the other methods, we found that U-Net
DENSENET121 architecture gave higher results than the rest of the
architectures.

This thesis is a comprehensive study that tries to evaluate the

segmentation step in skin lesions using deep learning approaches.
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