

شبكة المعلومات الحامعية

# بسم الله الرحمن الرحيم



-Caro-



شبكة المعلومات الحامعية



شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم





ببكة المعلم مات المامعية

## hossam maghraby

## جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

## قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات



يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار



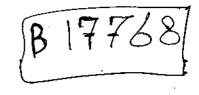


شبكة المعلومات الجامعية





شبكة المعلومات الحامعية




بالرسالة صفحات لم ترد بالأصل



# Evaluation of a new transformation method in tomato

By



#### Mohamed Eid Mohamed Saad

B.Sc. Agric. Sci. Cairo University, 1994

Thesis
Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN Vegetable Crops

Department of Vegetables
Faculty of Agriculture
Cairo University
(2001)

#### APPROVAL SHEET

Name: Mohamed Eid Mohamed Saad

Title: Evaluation of a New Transformation Method in Tomato

### A thesis submitted for the M.Sc. degree In Vegetable Crops

Approved by:

Prof. Dr.

Prof. Dr.

Prof. Dr.

Effat Bach

Ahad A. Ham

M. A. Badawi

Committee in charge

Date: 2/6/2001

#### **Supervisors**

Prof. Dr. Mohammed A. Badawi

Chairman of Dept. of Vegetable Crops

Faculty of Agriculture, Cairo Univ.

Prof. Dr. Ebtissam H. A. Hussein

Professor of Genetics

Faculty of Agriculture, Cairo Univ.

Prof. Dr. Hanaiya A. El-Itriby

Deputy Director, Agricultural Genetic

Engineering Research Institute (AGERI),

Agricultural Research Center

#### **Approved By**

Prof. Dr. Effat A. Badr

Professor of Genetics

Faculty of Agriculture, Alexandria Univ.

Prof. Dr. Ahmed A. Hassan

Professor of Vegetable Crops

Faculty of Agriculture, Cairo Univ.

Prof. Dr. Mohammed A. Badawi

Chairman of Dept. of Vegetable Crops

Faculty of Agriculture, Cairo Univ.

| Name of   | Candidate Mohan    | ned Eid Mohamed Saad       | Degree M.Sc |
|-----------|--------------------|----------------------------|-------------|
|           |                    | New Transformation Met     |             |
| Superviso |                    | med A. Badawi, Prof. Dr. E |             |
| ,         | Hussein and Prof   | . Dr. Hanaiya A. El-Itriby |             |
| Departme  | nt Vegetable Crops |                            |             |
| •         | Vegetable          | Anproval                   |             |

#### ABSTRACT

new system for transformation of tomato was evaluated using the Helios Gene Gun. Transformation parameters were optimized using a plasmid containing the GUS gene. The bombarded leaflets were subjected to the GUS histochemical assay and the number of blue foci was counted. The highest GUS expression was obtained when using helium pressure of 200 psi with 0.6µm gold particle size. The microcarrier loading quantity (MLQ) of 0.25 mg/shot was found to be the most convenient for use with the Helios Gene Gun. A promoter comparison study was carried out with both the Helios Gene Gun and the Biolistic Gun. The level of expression of the promoters in driving the GUS expression was estimated by counting the number of blue foci expressed in the bombarded leaflets. The CsVMV promoter showed the highest expression followed by the CaMV 35S promoter then the Maize Ubil promoter while the Rice Actl showed the lowest average expression. Similar results were obtained with both the Biolistic Gun and the Helios Gene Gun. Apical meristems of 12 plants from each of the 3 cultivars (Castlerock, Strain B and Peto 86) were bombarded with the construct harboring the CsVMV promoter using the Helios Gene Gun. Transformed plants were screened for putative transgenic events using PCR. No amplification products were obtained revealing no sign of stable transformation. The effects of the new system on the morphological characters of the bombarded plants were investigated. Statistical analysis of data collected on different morphological characters indicated no significant differences between the bombarded and nonbombarded plants using the Helios Gene Gun.

## To My Family

Mohamed

#### ACKNOWLEDGMENT

#### I do thank Allah for all the gifts he has given me

I would like to express my very deep gratitude to my supervisor **Prof. Dr.**Mohamed Abd-El-Mageed Badawi, Chairman of Dept. of Vegetable Crops, Faculty of Agriculture, Cairo University for his valuable guidance, for his great assistance and for the constant help, care and encouragement he provided me.

I would like to acknowledge my supervisor **Prof. Dr. Ebtissam Hussein,** Professor of Genetics, Faculty of Agriculture, Cairo University for her supervision, continuous help and valuable support during the entire work.

I would like to thank my supervisor **Prof. Dr. Hanaiya El Itriby**, Cheif Researcher and Deputy Director of the Agricultural Genetic Engineering Research Institute. (AGERI), for her supervision, valuable advice and keen interest throughout my work.

I can find no words to express my deep gratitude to **Prof. Dr. Magdy Madkour,** Director of the Agricultural Genetic Engineering Research

Institute (AGERI), for his kindness and continuous support.

I would like to express my gratitude to **Dr. Gharib Abdel Raouf Gad El Karim**, Chief Researcher at AGERI, ARC, for his keen help with the statistical analyses.

Finally, I appreciate the support of my colleagues at AGERI especially Dr. Dina El Khishin, Dr. Shireen Assem, Dr. Amina Abdel Hamid, Mohamed Abdel Sadek, Amr Ageez, Khaled Hashem, Ahmed Shokry, Nasser Abdel Razik, Dina El-Amir, Emad Hassanien, Hisham El-Shishtawy and our lab. assistants Howeida El Garhey and Shafik Darwish.

## Abbreviations

| neomycin phosphotransferase II                  | NPT II |
|-------------------------------------------------|--------|
| $\beta$ -glucuronidase                          | GUS    |
| chloramphenicol acetyltransferase               | CAT    |
| Cauliflower Mosaic Virus                        | CaMV   |
| Cassava Vein Mosaic Virus                       | CsVMV  |
| Polyubiquitin                                   | Ubi    |
| Actin                                           | Act    |
| phosphinothricin acetyl transpherase            | PAT    |
| phosphinothricin                                | PPT    |
| Polymerase Chain Reaction                       | PCR    |
| Yeast Artificial Chromosome                     | YAC    |
| green fluorescent protein                       | GFP    |
| major outer membrane protein                    | MOMP   |
| I-aminocyclopropane-1-carboxylate               | ACC    |
| alcoholdehydrogenase                            | Adh    |
| Piperazine-N,N'-bis(2-ethanesulfonic acid; 1,4- | PIPES  |
| Piperazinediethanesulfonic acid                 |        |
| Sodium Dodecyl Sulfate                          | SDS    |
| Polyvinylpyrrolidone                            | PVP    |
| Pound per square Inch                           | psi    |
| luciferase                                      |        |
| polygalacturonase                               | PG     |

#### **CONTENTS**

| 3-2-3-Analysis of putative transgenics 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 76 4-1-Tomato transformation using the Helios Gene Gun 77 1-Optimization of bombardment conditions 77 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 82 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 85 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 95 4-4-Morphological Characterization 96 97 89 98 99 99 90 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                  |                                                       | Page  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------|
| REVIEW OF LITERATURE  MATERIALS AND METHODS  3-1-Materials  3-1-Plant Materials  3-1-2-Plasmid constructs  3-2-Methods  3-2-I-Cloning and preparation of plasmid DNA  3-2-1-Cloning and preparation via particle bombardment  1-Helios Gene Gun  2-Biolistic Gun  3-Tomato transformation experiments  3-2-3-Analysis of putative transgenics  1-Histochemical GUS assay  2-Molecular screening of bombarded plants  3-2-4-Morphological Characters  3-2-5-Statistical Analysis  RESULTS AND DISCUSSION  4-1-Tomato transformation using the Helios Gene Gun  4-1-1-Optimization of bombardment conditions  1-Optimization of gold particle size and acceleration pressure  2-Optimization of Microcarrier Loading Quantities (MLQ)  4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY  REFERENCES          | INTRODUCTION                                          | 1     |
| MATERIALS AND METHODS  3-1-Materials 3-1-Plant Materials 3-1-2-Plasmid constructs 3-2-Methods 3-2-1-Cloning and preparation of plasmid DNA 3-2-1-Cloning and preparation via particle bombardment 1-Helios Gene Gun 2-Biolistic Gun 3-Tomato transformation experiments 3-2-3-Analysis of putative transgenics 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 3-2-4-Morphological Characters 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 4-4-Morphological Characterization SUMMARY REFERENCES 111             |                                                       | 4     |
| 3-1-Materials 3-1-1-Plant Materials 3-1-1-Plant Materials 3-1-2-Plasmid constructs 3-2-Methods 3-2-1-Cloning and preparation of plasmid DNA 3-2-2-Tomato transformation via particle bombardment 1-Helios Gene Gun 2-Biolistic Gun 3-Tomato transformation experiments 64 3-2-3-Analysis of putative transgenics 67 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 4-4-Morphological Characterization  SUMMARY REFERENCES 111 |                                                       | 37    |
| 3-1-2-Plasmid constructs 3-2-Methods 3-2-I-Cloning and preparation of plasmid DNA 3-2-2-Tomato transformation via particle bombardment 1-Helios Gene Gun 2-Biolistic Gun 3-Tomato transformation experiments 64 3-2-3-Analysis of putative transgenics 67 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3-1-Transformation of tomato apical meristems In planta 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 4-4-Morphological Characterization  SUMMARY REFERENCES 111 |                                                       | 37    |
| 3-2-Methods 3-2-1-Cloning and preparation of plasmid DNA 3-2-2-Tomato transformation via particle bombardment 1-Helios Gene Gun 2-Biolistic Gun 3-Tomato transformation experiments 64 3-2-3-Analysis of putative transgenics 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3- In planta tomato transformation using the Helios Gene Gun 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 101 SUMMARY REFERENCES                      | 3- 1-1-Plant Materials                                | 37    |
| 3-2-1-Cloning and preparation of plasmid DNA 3-2-2-Tomato transformation via particle bombardment 1-Helios Gene Gun 2-Biolistic Gun 3-Tomato transformation experiments 64 3-2-3-Analysis of putative transgenics 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3-1n planta tomato transformation using the Helios Gene Gun 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 101 SUMMARY REFERENCES                                   | 3-1-2-Plasmid constructs                              | 37    |
| 3-2-2-Tomato transformation via particle bombardment  1-Helios Gene Gun  2-Biolistic Gun  3-Tomato transformation experiments  43-2-3-Analysis of putative transgenics  1-Histochemical GUS assay  2-Molecular screening of bombarded plants  3-2-4-Morphological Characters  3-2-5-Statistical Analysis  RESULTS AND DISCUSSION  4-1-Tomato transformation using the Helios Gene Gun  4-1-1-Optimization of bombardment conditions  1-Optimization of gold particle size and acceleration pressure  2-Optimization of Microcarrier Loading Quantities  (MLQ)  4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  9-8  4-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                    | 3-2-Methods                                           | 43    |
| 1-Helios Gene Gun 2-Biolistic Gun 3-Tomato transformation experiments 64 3-2-3-Analysis of putative transgenics 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis  RESULTS AND DISCUSSION 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 101 SUMMARY 105 REFERENCES                                                                                                                                                                                                 | 3-2-1-Cloning and preparation of plasmid DNA          | 43    |
| 2-Biolistic Gun 3-Tomato transformation experiments 64 3-2-3-Analysis of putative transgenics 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 76 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1-Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 101 SUMMARY REFERENCES                                                                                                                                                                                                                   | 3-2-2-Tomato transformation via particle bombardment  | 53    |
| 3-Tomato transformation experiments  3-2-3-Analysis of putative transgenics  1-Histochemical GUS assay  2-Molecular screening of bombarded plants  3-2-4-Morphological Characters  3-2-5-Statistical Analysis  RESULTS AND DISCUSSION  4-1-Tomato transformation using the Helios Gene Gun  4-1-1-Optimization of bombardment conditions  1-Optimization of gold particle size and acceleration pressure  2-Optimization of Microcarrier Loading Quantities  (MLQ)  4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1-Tomato transformation using the biolistic gun  4-2-2-Helios Gene Gun Transformation  4-2-3-Efficiency of the different promoters in driving the GUS transient expression  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  98  4-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                                                                                                                   | 1-Helios Gene Gun                                     | 53    |
| 3-2-3-Analysis of putative transgenics 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 68 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 76 4-1-Tomato transformation using the Helios Gene Gun 77 1-Optimization of bombardment conditions 77 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 82 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 85 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 95 4-4-Morphological Characterization 96 97 89 98 99 99 90 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                  | 2-Biolistic Gun                                       | 61    |
| 1-Histochemical GUS assay 2-Molecular screening of bombarded plants 3-2-4-Morphological Characters 74 3-2-5-Statistical Analysis 75 RESULTS AND DISCUSSION 76 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 94 4-4-Morphological Characterization 95 96 97 98 98 99 99 99 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                                                                 | 3-Tomato transformation experiments                   | 64    |
| 2-Molecular screening of bombarded plants  3-2-4-Morphological Characters  3-2-5-Statistical Analysis  RESULTS AND DISCUSSION  4-1-Tomato transformation using the Helios Gene Gun  4-1-1-Optimization of bombardment conditions  1-Optimization of gold particle size and acceleration pressure  2-Optimization of Microcarrier Loading Quantities (MLQ)  4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  98  4-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                                                                                                                                                                                                                         | 3-2-3-Analysis of putative transgenics                | 67    |
| 3-2-4-Morphological Characters 3-2-5-Statistical Analysis  RESULTS AND DISCUSSION 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 9-4-4-Morphological Characterization 9-76 7-76 7-76 7-76 7-76 7-76 7-76 7-76                                                                                                                                                                                                                                                                                                                                                                               |                                                       | 67    |
| 3-2-5-Statistical Analysis  RESULTS AND DISCUSSION  4-1-Tomato transformation using the Helios Gene Gun  4-1-1-Optimization of bombardment conditions  1-Optimization of gold particle size and acceleration pressure  2-Optimization of Microcarrier Loading Quantities (MLQ)  4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios  Gene Gun  4-3-2-Screening for the transgene (GUS)  9-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                  | 2-Molecular screening of bombarded plants             | 68    |
| RESULTS AND DISCUSSION  4-1-Tomato transformation using the Helios Gene Gun  4-1-1-Optimization of bombardment conditions  1-Optimization of gold particle size and acceleration pressure  2-Optimization of Microcarrier Loading Quantities (MLQ)  4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios  Gene Gun  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  98  4-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                                                                                                                                                                                                                                                               | 3-2-4-Morphological Characters                        | 74    |
| 4-1-Tomato transformation using the Helios Gene Gun 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 85 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 95 4-4-Morphological Characterization 96 SUMMARY 107 REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                                     | 75    |
| 4-1-1-Optimization of bombardment conditions 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 82 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 85 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 90 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3- In planta tomato transformation using the Helios Gene Gun 95 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 90 SUMMARY 107 REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                    | RESULTS AND DISCUSSION                                |       |
| 1-Optimization of gold particle size and acceleration pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 82 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 85 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3- In planta tomato transformation using the Helios Gene Gun 95 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 103 SUMMARY REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |       |
| pressure 2-Optimization of Microcarrier Loading Quantities (MLQ) 82 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study 85 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 90 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3- In planta tomato transformation using the Helios Gene Gun 95 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 107 SUMMARY 107 REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                     | 77    |
| 2-Optimization of Microcarrier Loading Quantities (MLQ)  4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios  Gene Gun  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1-Optimization of gold particle size and acceleration |       |
| 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios  Gene Gun  95  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  98  4-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>A</b>                                              | 78    |
| 4-2-Comparison between the transformation efficiency using the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios  Gene Gun  95  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  98  4-4-Morphological Characterization  SUMMARY  REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -                                                     |       |
| the Helios Gene Gun and the Biolistic Gun via a promoter comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios  Gene Gun  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY  REFERENCES  107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |       |
| comparison study  4-2-1- Tomato transformation using the biolistic gun  4-2-2- Helios Gene Gun Transformation  90  4-2-3- Efficiency of the different promoters in driving the GUS transient expression  94  4-3- In planta tomato transformation using the Helios Gene Gun  95  4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS)  98  4-4-Morphological Characterization  SUMMARY  107  REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |       |
| 4-2-1- Tomato transformation using the biolistic gun 4-2-2- Helios Gene Gun Transformation 90 4-2-3- Efficiency of the different promoters in driving the GUS transient expression 94 4-3- In planta tomato transformation using the Helios Gene Gun 95 4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 101 SUMMARY 102 REFERENCES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       | 0.5   |
| 4-2-2- Helios Gene Gun Transformation 4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios Gene Gun  4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY REFERENCES  111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ± •                                                   |       |
| 4-2-3- Efficiency of the different promoters in driving the GUS transient expression  4-3- In planta tomato transformation using the Helios Gene Gun  4-3-1-Transformation of tomato apical meristems In planta 4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY REFERENCES  111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                       |       |
| the GUS transient expression  4-3- In planta tomato transformation using the Helios  Gene Gun  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY  REFERENCES  111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 90    |
| 4-3- In planta tomato transformation using the Helios  Gene Gun  4-3-1-Transformation of tomato apical meristems In planta  4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY  REFERENCES  107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       | . 04  |
| Gene Gun 4-3-1-Transformation of tomato apical meristems In planta 95 4-3-2-Screening for the transgene (GUS) 98 4-4-Morphological Characterization 101 SUMMARY REFERENCES 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       | 94    |
| 4-3-1-Transformation of tomato apical meristems <i>In planta</i> 4-3-2-Screening for the transgene ( <i>GUS</i> )  4-4-Morphological Characterization  SUMMARY  REFERENCES  107                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       | 05    |
| 4-3-2-Screening for the transgene (GUS)  4-4-Morphological Characterization  SUMMARY  REFERENCES  98  107  107  111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                       | -     |
| 4-4-Morphological Characterization 107 SUMMARY 107 REFERENCES 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                       |       |
| SUMMARY 107 REFERENCES 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • • • •                                               |       |
| REFERENCES 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |       |
| ARABII NIIMIMARY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ARABIC SUMMARY                                        | Y I I |

## List of Tables

|                                                                                                                                                                                         | Page    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Table (1): Variable parameters used in the experiments for                                                                                                                              |         |
| optimization of bombarding conditions using the Helios Gene Gun                                                                                                                         | 65      |
| Table (2): Average number of blue spots in tomato leaflets bombarded with different pressures and gold particle sizes                                                                   | ;<br>79 |
| Table (3): Analysis of variances of transformation experiments for optimizing the helium pressure (psi) and the Gold particle sizes $(\mu m)$                                           | s 81    |
| Table (4): Average number of blue spots in tomato leaflets after                                                                                                                        | r       |
| shooting with different (MLQ) using Helios Gene Gun                                                                                                                                     | 82      |
| Table (5): Analysis of variances of the results obtained from the experiment for optimizing the Microcarrier Loading Quantities (MLQ)                                                   |         |
| Table (6): Average number of <i>GUS</i> expression units (blue spots resulting from shooting tomato leaflets with different construct using the Biolistic Gun                           |         |
| Table (7): Average number of <i>GUS</i> expression (blue foci) unit resulting from shooting tomato leaflets with different construct using the Helios Gene Gun                          |         |
| Table (8): Combined analysis of variances for the promote comparison study between the Helios Gene Gun and the Biolisti Gun                                                             |         |
| Table (9): Average values of the 3 vegetative characters recorder<br>on bombarded and non bombarded (control) tomato plants of the<br>three cultivars: Peto 86, Strain B and Castlerock |         |