

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Postoperative Analgesic Efficiency of Transversus Abdominis Plane Block with and without Magnesium Sulphate after Surgical Repair of Moderate Sized Umbilical Hernia

Thesis

Submitted For Partial Fulfillment of Master Degree In Anesthesia

By

Shaimaa Mansour Abd Elkader Morgan

M.B.B. Ch, Faculty of Medicine, Ain Shams University.

Under supervision of

Prof. Dr. Mohamed Hossam El Din Hamdy Shokeir

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Ahmed Mohamed El Sayed El Hennawy

Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

Dr. Simon Halim Armanios

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Hossam & Din**Hamdy Shokeir, Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Ahmed Mohamed El Sayed El****Bennawy*, Assistant Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine - Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Simon Halim**Armanios, Lecturer of Anesthesia, Intensive Care and Pain

Management Faculty of Medicine - Ain Shams University, for his

great help, active participation and guidance.

Shaimaa Mansour

Abstract

Background:

The transversus abdominis plane (TAP) block is a known approach for blocking the abdominal wall neural afferents via the bilateral lumbar triangles of Petit. Different adjuvants have been used to intensify the quality and the duration of local anesthetics. We evaluate adding magnesium sulfate to Bupivacaine as a post operative analgesic after umbilical hernia operation

Aim of the Work:

The aim of this study is to detect the efficacy and safety of magnesium sulphate as an adjuvant to the analgesia offered by local anesthetic in ultrasound guided TAP block in patients undergoing surgical repair of moderate sised umilical hernia. We designed this study to evaluate the effect of adding magnesium sulphate to bupivacaine.25 % in the ultrasound-guided TAP block anesthesia after open appendectomy operation, As regard postoperative pain block and opiod consumption using Visual Analogue scale VAS.

Patients and Methods:

Type of Study: Prospective double blinded randomized controlled trial. Study Setting: Ain Shams University Hospital, Cairo, Egypt. Study Period: 6 months. Study Population: the study was carried out on 40 patients who was undergo sirgical Eligibility Criteria: Age: 18-40 years. Physical status: ASA I,II. Both sexes. BMI<35

Results:

In our study we workout on 40 patient with moderate size umbilical hernia 20 patient receive post operative analgesic TAP block with Bupivacaine 0.25% (20ml) and other 20 patient receive post operative analgesic TAP block with Bupivacaine 0.25% 18ml and 200mg (2ml) Mgso4.

Conclusion:

MgSO4 as an adjuvant to Bupivacaine in Ultra-sounded guided TAP block reduces post-operative pain scores, prolong the duration of analgesia and decreases demand for rescue analgesics.

List of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Anatomy of Anterior Abdominal Wall	5
Pain Pathway	21
Pharmacology of Local Anesthetics	44
Transversus Abdominis Plane Block (TAP Blo	ck)52
Patients and Methods	70
Results	76
Discussion	91
Conclusion	98
Summary	99
References	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (1):	Types of Primary Sensory Afferent Fi	bers28
Table (2):	Opioid receptors and their actions	40
Table (3):	Dosage and pharmacokinetic Bupivacaine:	
Table (4):	The classification of ultrasound-guid blocks and the corresponding supplied	
Table (5):	Comparison between group I and groregard demographic data	_
Table (6):	Comparison between group I and regarding heart rate pre, intra as operative.	nd post-
Table (7):	Comparison between group I and groregard mean arterial blood pressintra and postoperative	ure pre,
Table (8):	Comparison between group I and groregard VAS pain score postoperative.	-
Table (9):	Comparison between group I and groregard time for 1st and 2nd Rescue D	-
Table (10):	Comparison between group I and group regard number of patients ask analgesic doses at different time interest.	ing for

List of Figures

Fig. No.	Title	Page No.
Figure (1): Figure (2):	Muscles of anterior abdominal wall A cross-section of the abdominal	
	layers	10
Figure (3):	Abdominal wall innervation (Superflayer)	
Figure (4):	Abdominal wall innervation (intermed layer)	
Figure (5):	Abdominal wall innervation (deep lay	ver) 16
Figure (6):	Cutaneous innervation of the abdom wall	
Figure (7):	Diagram of Ascending Pain Path (Sigma Aldrich)	
Figure (8):	Neospinothalamic tract paleospinothalamic tract	
Figure (9):	Shows NRS, VRS and VAS as assessment scores	_
Figure (10):	Basic local anesthetic structure	44
Figure (11):	Lumbar triangle of Petit betweeternal oblique muscle latissimusdorsi	and
Figure (12):	Anatomical description of the triang Petit (lateral view)	le of
Figure (13):	Four approaches of ultrasound-gutransversus abdominis plane (7) blocks	TAP)
Figure (14):	The patient is in the supine position USG-TAP block (Th10-Th12)	
Figure (15):	Image of the abdominal wall	64

List of Figures Cont...

Fig. No.	Title	Page	No.
Figure (16):	Ultrasound identification of transversus abdominis plane		64
Figure (17):	Local anesthetic injection in transve abdominis plane		65
Figure (18):	Lateral approach of transverse abdominis plane (TAP) block		67
Figure (19):	Posterior approach of transverse abdominis plane (TAP) block	ersus	
Figure (20):	Bar chart between group I and grou as regard age (years).	_	77
Figure (21):	Bar chart between group I and grou as regard sex.	ıp II	
Figure (22):	Bar chart between group I and group as regard BMI.	ıp II	
Figure (23):	Bar chart between group I and grou as regard ASA	ıp II	
Figure (24):	Comparison between group I and g II as regard heart rate pre,Ir postoperative	roup ntra,	
Figure (25):	Comparison between group I and grow regarding mean arterial blood (mmHg	up II	
Figure (26):	Comparison between group I and g II as regard VAS score postoperative	roup	
Figure (27):	Bar chart between group I and group regard time for 1st and 2 nd Rescue Do	II as	
Figure (28):	Comparison between group I and g II as regard number of patients as for analgesic doses at different intervals.	roup king time	

List of Abbreviations

Abb.	Full term
5-HT	5-hydroxytryptamine
	Adrenocorticotropic hormone
	American Society of Anesthesiologists
	central nervous system
	Cyclooxygenase2
	Cardiovascular system
	Deep circumflex iliac artery
	External oblique muscle
	Gamma-amino butyric acid
	International Association for the Study of Pain
IL-1	
IO	Internal oblique muscle
L. alba	
L. semilunaris	Linea semilunaris
NHS	National Health Service
NMDA	N-methyl-D-aspartate
NRS	Numeric rating scale
NSAIDs	Non-steroidal anti- Inflammatory drugs
PACU	Postoperative anesthesia care unit
PG	Prostaglandins
PGE2	Prostaglandins E2
POP	Postoperative pain
QL	Quadratus lumborum
RA	Rectus abdominis
SSR	Surgical Stress Response
TA	Transversus abdominis
TAP Block	Transversus Abdominis Plane Block
TENS	Transcutaneous Electrical Nerve Stimulation
VAS	Visual analogue scale
VRS	Verbal rating scale

Introduction

vince the concept of day case surgeries are getting more popular, surgeons and anesthesiologists are trying their best to provide adequate post operative analgesia.

The proper management of post operative pain ensures early ambulation of patients and obviates many post operative Complications (Schug, 2011).

The most common modality for post- operative pain management has remained the parentral use of non-steroidal anti- Inflammatory drugs (NSAIDs) and opioids.

The infiltration of surgical wound with long acting local anesthetic agents has also remained a popular method to take care of immediate post operative pain.

This technique is virtually cost free, rapid and hardly requires any special technical experience or equipment for its use.

But as there are advances in anesthetic techniques, more and more regional blocks are being tried to take care of post operative pain.

The choice of anesthetic block technique depends upon the site of surgical incision proposed. Transversus abdominis plane (TAP) block is a novel approach in which local anesthetic