

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

URANIUM SORPTION ONTO SOME SEDIMENTS AND ITS REMEDIATION

By

HODA ABD ELNABI REFAEI ALI AHMED

B.Sc. Agric. Sc. (Soil Science), Fac. of Agric., Cairo Univ., 2004 M.Sc. Agric. Sc. (Soil Science), Fac. of Agric., Cairo Univ., 2012

A Thesis Submitted in Partial Fulfillment
Of
the Requirements for the Degree of

in
Agricultural Sciences
(Soil Sciences)

Department of Soil Sciences
Faculty of Agriculture
Ain Shams University

Approval Sheet

URANIUM SORPTION ONTO SOME SEDIMENTS AND ITS REMEDIATION

By

HODA ABD ELNABI REFAEI ALI AHMED

B.Sc. Agric. Sc. (Soil Science), Fac. of Agric., Cairo Univ., 2004 M.Sc. Agric. Sc. (Soil Science), Fac. of Agric., Cairo Univ., 2012

This thesis for Ph.D. degree has been approved by:

Date of Examination: 20 / 1 /2020

Dr. Hasan Hamza Abbas Prof. Emeritus of Soil Sciences, Faculty of Agriculture, Benha University. Dr. Mahamoud Mohammed El bordiny Prof. of Soil Sciences, Faculty of Agriculture, Ain Shams University. Dr. Mohammed El- Sayed El- Nenna Prof. Emeritus of Soil Sciences, Faculty of Agriculture, Ain Shams University. Dr. Farida Hamid Rabie Prof. Emeritus of Soil Sciences, Faculty of Agriculture, Ain Shams University.

URANIUM SORPTION ONTO SOME SEDIMENTS AND ITS REMEDIATION

$\mathbf{B}\mathbf{v}$

HODA ABD ELNABI REFAEI ALI AHMED

B.Sc. Agric. Sc. (Soil Science), Fac. of Agric., Cairo Univ., 2004 M.Sc. Agric. Sc. (Soil Science), Fac. of Agric., Cairo Univ., 2012

Under the supervision of:

Dr. Farida Hamid Rabie

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University (Principle Supervisor).

Dr. Mohammed El- Sayed El- Nenna

Prof. Emeritus of Soil Science, Department of Soil Science, Faculty of Agriculture, Ain Shams University.

Dr. Ahmed Morsy Ahmed Morsy (Late)

Prof. of Chemistry, Department of Isotopes, Nuclear Materials Authority.

ABSTRACT

Hoda Abd El-Nabi Refaei: Uranium Sorption onto Some Sediments and Its Remediation. Unpublished Ph.D. Thesis, Department of Soil Science, Faculty of Agriculture, Ain Shams University, 2020.

The purpose of this investigation is to study how to remove and/or reduce uranium pollution in certain area in Sinai (Wadi Um Hamad, southwest Sinai, Egypt). Two methods were tried:

- 1- Chemical method in which natural clay deposits were used before and after their modification.
- 2- Phytoremediation using sunflower plant.

In the first method, two different kinds of deposits, kaolinitic dominant sediment while other is smectite dominant one. In this experiment both deposits were used before and after their modification. Modification involved acid activation and calcination. The second remediation method is the phytoremediation in which sunflower plant was used in pots experiment.

This investigation involved also, studying factors affected adsorption and desorption of uranium by the modified and non-modified sediments such as: concentrations of adsorbate, temperature, pH, contact time and quantities of adsorbents. Also, sequential extraction of uranium adsorbed by different constituents of the sediments, i.e., organic, carbonate, exchangeable, oxides and residue, were estimated.

In the following are some of the obtained results:

- Um Hamad sediments have sandy loam texture, non-saline, but alkaline (pH= 8). Total and available uranium are 260 ppm and 28 mg/l, respectively.
- Adsorption of uranium was highest at pH 5 and 6 by kaolinitic and smectitic sediments, respectively. U adsorbed by smectitic sediments is higher than that adsorbed by kaolinitic one. especi

- Modification of clay deposits by calcination improved their adsorption capacity than acid activation treatment.
- The kinetics studies showed adsorption expressed well by pseudo second-order model. Sodium acetate solution is the best eluent for uranium desorption from loaded adsorbent.
- Results of phytoremediation by sunflower reveal that uranium accumulated in roots than shoots, and generally increased by increasing U. Furthermore dry weight of sunflower increased by increasing plant age. It is worth to mention that the increase of dry weight of sunflower plant by increasing U concentration is not related to any positive effect for U on plant. It is well known fact that U is not an essential element. This increase in plant dry weight is related mainly to soil type as explained in the text.

Key words: Uranium, Um Hamad, Adsorption, Desorption, Smectite, Kaolinite, Remediation, Phyto-extraction, Sunflower.

ACKNOWLEDGEMENT

I like to express sincere thanks, deepest gratitude and appreciation to *Dr. Farida Hamid Rabie*, Emeritus Professor of mineralogy, Faculty of Agriculture, Ain Shams University and *Dr. Mohamed El- Sayed El- Nenna*, Emeritus Professor Emeritus of soil chemistry, Faculty of Agriculture, Ain Shams University

Grateful thanks also, due to late *Dr. Ahmed Morsy Ahmed Morsy*, Professor of chemistry, Nuclear Materials Authority, for supervision, advice, guidance and continuous help through the different phases of the study.

Thanks also are extended to *Dr. Mohamed Abdullah Seddik Gado*, Lecturer at Nuclear Materials Authority, Cairo, for his help.

Sincere grateful thanks and indebt are due to *my family* and *my friends* for their help and kind feeling.

CONTENTS

	Page
LIST OF TABLES	IV
LIST OF FIGURES	VI
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Uranium	3
2.2. Uranium in soil	4
2.3. Uranium hazardous effects	4
2.4. Removal Processes of uranium.	5
2.4.1. Adsorption process	6
2.4.2. Desorption process	12
2.5. Phytoremediation	13
3. MATERIAL AND METHODS	20
3.1. Materials.	20
3.1.1. Clay minerals	20
3.1.2. Soil samples	22
3.2. Experiments	23
3.2.1. Adsorption experiments	23
3.2.2. Desorption of uranium	29
3.3. Remediation experiments.	30
3.3.1. Incubation experiment.	30
3.3.2. Pots experiment	29
3.4. Methods	31
3.4.1. Methods of extraction and chemical analyses	31
3.4.2. Mineralogical and geochemical analyses	34
3.5. Statistical analyses	34
4. RESULTS AND DISCUSSION	35
4.1. Modification of clay minerals	35
4.1.1. Effect of clay modification on U adsorption	38
4.1.2. Factors affecting U adsorption	39

	Page
4.1.2.1. Effect of contact time	39
4.1.2.2. Adsorption isotherm as a function of uranium initial	
concentrations	45
4.1.2.3. Effect of pH on U adsorption	52
4.1.2.4. Effect of temperature on U adsorption	54
4.1.2.5. Effect of adsorbent amount	55
4.1.2.6. Choice of the optimum adsorption conditions	57
4.2. Uranium de-sorption	58
4.3. Infrared Spectroscopy (IR)	58
4.4. Remediation of uranium in the studied area	61
4.4.1. Effect of clay minerals on uranium	61
4.4.1.1. Incubation experiment	61
4.5. Phytoremediation	68
4.5.1. The pots experiment	68
5. SUMMARY	81
6. REFERENCES	85
ARABIC SUMMARY	

LIST OF TABLES

Γable No.		Page
1	General characteristics of the used clay deposits	21
2	Some general characteristics of Um Hamad	
	sediments	22
3	Effect of clay modification treatments on U	
	adsorption	38
4	Effect of contact time upon uranium adsorption	
	efficiency onto calcinatd smectite and kaolinite	40
5	The calculated parameters of the kinetic models with	
	the linear correlation coefficients (R2) of uranium	
	ions sorbed onto adsorbents	44
6	Effect of initial uranium concentration onto uranium	
	adsorption efficiency on Smectite and kaolinite	
	samples	46
7	Parameters for plotting Langmuir adsorption,	
	Freundlich, Temkin and Dubinin-Radushkevich	
	isotherms of U ⁺⁶ ions onto kaolinite and Smectite	48
8	Effect of solution pH upon uranium adsorption	
	efficiency onto Smectite and kaolinite samples	54
9	Effect of adsorbent amount upon uranium adsorption	
	efficiency on calcinated Smectite and kaolinite	
	samples	56
10	Investigated parameters affecting the uranium	
	adsorption onto calcinated Smectite and kaolinite	
	amples	57
11	Desorption percentage of U previously sorbed onto	
	calcinated Smectite and kaolinite	58
12	Effect of clay minerals on uranium fractions in the	
	studied soil	64

Table No.		Page
13	Dry weight (gm) of shoots and roots of sunflower plant as affected by growth period and approximate	
14	concentration of uranium	69
15	approximate concentration of uranium	73
	period and approximate concentration of uranium	77