

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

Surgical Outcomes and adverse effects for Minimally Invasive versus Open Posterior Lumbar Interbody Fusion

A Systematic Review and Meta-Analysis

Submitted for Partial Fulfillment of Master Degree in Orthopedic Surgery

By Reda Shaaban Abdelhameed M.BB.Ch

Under Supervision by

Prof. Dr. Mohamed Abdelsalam Wafa

Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University

Ass. Prof. Dr. Tameem Shafik Elkhateeb

Assistant Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to ALLAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Dr. Mohamed Abdelsalam Wafa**, Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Tameem Mohamed Shafik Elkhateeb**, Assistant Professor of Orthopedic Surgery Faculty of Medicine – Ain Shams University, for his kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

Reda Shaaban Abdelhameed

List of Contents

Title	Page No.
List of Tables	
List of Figures	ii
List of Abbreviations	iv
Introduction	1
Aim of the Work	5
Review of Literature	6
Methodology	19
Results	22
Discussion	48
Summary & Conclusion	55
References	57
Arabic Summary	—

List of Tables

Table No.	Title	Page No.
Table (1):	The general characteristic of t	
Table (2):	The study design and follow up dur	ration24
Table (3):	Visual analog scale scores for back	pain25
Table (4):	Visual analog scale scores for back pain.	
Table (5):	Postoperative narcotics use (mg)	30
Table (6):	Oswestry Disability Index (%)	31
Table (7):	Operative time (min)	34
Table (8):	Blood loss (ml)	36
Table (9):	Length of hospital stays (days)	38
Table (10):	Radiation exposure time (s)	40
Table (11):	Fusion rate (%)	42
Table (12):	Complication rate	44
Table (13):	Specific complications rates	46

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Surgical approaches to the luinterbody fusion techniques	•
Figure (2):	Preoperative marking of the vecenters (a), and possible skin	-
Figure (3):	Preoperative marking of the centers, lateral pedicle boun possible skin incisions for MI-T	daries (a), and
Figure (4):	Minimally invasive posterio approach to the lumbar spine retractors.	e using tubular
Figure (5):	Identifying the lamina bone retractors.	
Figure (6):	Anteroposterior fluoroscopic placement of a tubular retractional landmarks for inserting pedicle	ctor (right) and
Figure (7):	Lateral fluoroscopic image trajectory of a tubular retractor	<u> </u>
Figure (8):	Anteroposterior fluoroscopic in spine post fixation.	_
Figure (9):	Clinical picture showing the using the minimally invasive a	
Figure (10):	Small skin incisions resuminimally invasive TLIF	_
Figure (11):	Flowchart of the electronic liter	rature search22
Figure (12):	Visual analog scale scores for operative)	
Figure (13):	Visual analog scale scores for operative)	

List of Figures Cont...

Fig. No.	Title Page No	
Figure (14):	Visual analog scale scores for back pain (las followup).	
Figure (15):	Visual analog scale scores for back pain (last followup).	
Figure (16):	Visual analog scale scores for preoperative back pain.	
Figure (17):	Visual analog scale scores for postoperative back pain.	
Figure (18):	Postoperative narcotics use (mg)	30
Figure (19):	Oswestry disability index (%) (pre operative)	32
Figure (20):	Oswestry disability index (%) (pre operative)	32
Figure (21):	Oswestry disability index (%) (last follow up)	33
Figure (22):	Oswestry disability index (%) (last follow up)	33
Figure (23):	Operative time.	35
Figure (24):	Operative time.	35
Figure (25):	Blood loss.	37
Figure (26):	Blood loss	37
Figure (27):	Length of hospital stays.	39
Figure (28):	Length of hospital stays.	39
Figure (29):	Radiation exposure time.	41
Figure (30):	Radiation exposure time.	41
Figure (31):	Fusion rate.	43
Figure (32):	Fusion rate.	43
Figure (33):	Complication rate.	45
Figure (34):	Complication rate.	45
Figure (35):	Specific complications rates in the two studied groups	

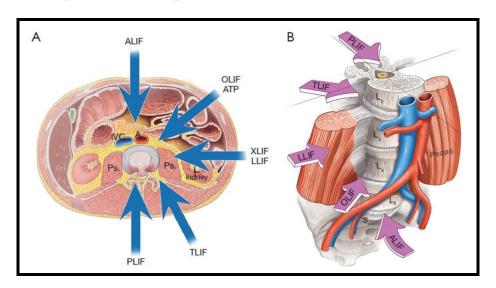

List of Abbreviations

Abb.	Full term
ALIF	. Anterior lumbar interbody fusion
ASD	. Adjacent segment disease
CI	. Confidence intervals
CK	. Creatinine kinase
LLIF	. Lateral lumbar inerbody fusion
LOS	. Length of hospital stay
MIS	. Minimally invasive surgery
MISSTs	. Minimally invasive spine surgery techniques
MI-TLIF	Minimal invasive transforraminal lumbar interbody fusion
ODI	. Oswestry Disability Index
OLIF/ATP	Oblique lumbar interbody fusion /anterior to psoas
OR	. Odds ratio
PLIF	. Posterior lumbar interbody fusion
PRISMA	Preferred Reporting Items for Systematic Reviews and Meta-Analyses
RCT	. Randomized controlled trial
SSI	. Surgical site infection
TLIF	. Transforaminal lumbar interbody fusion
VAS	. Visual analogue scale
XLIF	. Extreme lateral interbody fusion

Introduction

umbar spinal fusion is an accepted method of treatment for a variety of spinal pathologies. As the proportion of adults older than 65 years continues to rise, the demand for spinal fusion procedures, particularly for degenerative disorders, continues to increase (1).

There are many approaches for lumbar interbody fusions (*figure 1*). The main five are anterior (ALIF), transforaminal (TLIF), posterior (PLIF), lateral or extreme lateral (LLIF or XLIF) and oblique/anterior to psoas (OLIF/ATP). (2)

Figure (1): Surgical approaches to the lumbar spine for interbody fusion techniques⁽²⁾.

Unfortunately, the substantial blood loss, high complication rates and prolonged hospital stay associated with traditional open

midline techniques of spinal fusion may expose this patient population to an undesirable level of surgical morbidity (3).

Conventional lumbar fusion is also associated with significant muscle stripping and retraction that can adversely affect both short and long term patient outcomes (3).

Various minimally invasive spine surgery techniques (MISSTs) have been developed recently with the aim of improving clinical outcomes as opposed to traditional procedures. MISSTs have no universally accepted definition, but all of these reduce iatrogenic complications techniques aim to postoperative pain, promote faster recovery, and allow patients an earlier return to their normal daily activities. Further benefits include reduction of operative blood loss, shortening of hospital stay, reduced need for analgesics, smaller incisions, and preservation of posterior motion segments and paraspinal muscles. Several MISSTs have been introduced recently ⁽⁴⁾.

Minimally invasive lumbar fusion is performed via a muscle dilating approach and significantly diminishes the amount of iatrogenic soft tissue injury. As a result, the new procedures have shown the potential to reduce the amount of intra operative blood loss, the intensity of postoperative pain and the duration of hospital stays. (5)

The goal of any minimally invasive procedure is to achieve the same surgical objectives as the corresponding open procedure