

بسم الله الرحمن الرحيم

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات

بركات وتكنولوجيا

A STUDY OF SOME ENVIRONMENTAL IMPACTS OF AN OPERATIONAL WIND FARM ON MIGRATORY SOARING BIRDS AT GABEL AL-ZEIT//RED SEA, EGYPT

Submitted By

Osama Ahmed Moustafa Saadawy Gebaly

B.Sc. of Science (Chemistry & Zoology), Faculty of Science, Cairo University, 1994

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Faculty of Graduates Studies & Environmental Research Ain Shams University

APPROVAL SHEET

A STUDY OF SOME ENVIRONMENTAL IMPACTS OF AN OPERATIONAL WIND FARM ON MIGRATORY SOARING BIRDS AT GABEL AL-ZEIT// RED SEA, EGYPT

Submitted By

Osama Ahmed Moustafa Saadawy Gebaly

B.Sc. of Science (Chemistry & Zoology), Faculty of Science,

Cairo University, 1994 A Thesis Submitted in Partial Fulfillment Of The Requirement for the Master Degree

In

Environmental Sciences Department of Environmental Basic Sciences

This thesis was discussed and approved by:

The Committee Signature

1-Prof. Dr. Sohail Samy Soliman

Emeritus Prof. of Vertebrate Ecology & Taxonomy Faculty of Science Ain Shams University

2-Prof. Dr. Moustafa Mokhtar Fouda

Advior to Minister of Environment & National Focal Point for Convention of Biological Diversiy

3-Prof. Dr. Samy Abdel Latif Ahmed Saber

Prof. of fauna & Animal Ecology Faculty of Science Al-Azhaar University

4-Prof. Dr. Hamada Mohamed Mahmoud

Prof. of Environmental Science Dean of Faculty of Science Beni Suef University

2022

A STUDY OF SOME ENVIRONMENTAL IMPACTS OF AN OPERATIONAL WIND FARM ON MIGRATORY SOARING BIRDS AT GABEL AL-ZEIT//RED SEA, EGYPT

Submitted By Osama Ahmed Moustafa Saadawy Gebaly

B.Sc. of Science (Chemistry & Zoology), Faculty of Science, Cairo University, 1994

A Thesis Submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Sohail Samy Soliman

Emeritus Prof. of Vertebrate Ecology & Taxonomy Faculty of Science Ain Shams University

2-Prof. Dr. Moustafa Mokhtar Fouda

Advior to Minister of Environment & National Focal Point for Convention of Biological Diversiy

2022

My sincere regards to **Dr. Adel Soliman, the expert at Migratory Soaring Birds project** who gave me the full support, positive energy and spirit to fulfill this study.

Special thanks are due to a group of ornithologists and bird watchers who helped me to monitor the migration and collect some data for the present study and to my colleagues, **Ibrahim Al Hasani**, **Mahmoud Al Mongy and Sayed Abdel Halim**.

This work can't be completed without the support of the Migratory Soaring Birds project, the Egyptian New and Renewable Energy Authority (NREA), and Egyptian Environmental Affairs Agency (EEAA) for their support and facilitation of obstacles during the study.

Finally, there are no words that could express my gratitude to my beloved family for their support and encouragement and I would like to dedicate this work to all of them.

ABSTRACT

Egypt includes a great part of the Great Rift Valley/Red Sea flyway; the second world's most important flyway for migratory soaring birds. It acts as a corridor between Eurasia and Africa The aim of the present study is to study the phenology and survey the numbers of species and individuals of migratory soaring birds that pass through a wind farm (240 Megawatts (MW) wind energy project of Kreditanstaltfür Wiederaufbau (Germany's development bank) (KFW) located in Gebel Al-Zeit area, Red Sea Governorate, Egypt. Bird monitoring was conducted by visual observations, for eight hours during daytime at the whole survey period in two fixed observation points, during the period extending from March 4th to May 10th, 2018. This observation period covered a four-week peak of spring migration season. A total of 143,906 soaring birds belonging to 32 species were counted. The most common bird species was the white stork (63.1%), the northern steppe buzzard/common buzzard (13.21%), the great white pelican (7.42%)the European honey buzzard (6%), the Levant sparrowhawk (2.38%), and the black kite, (2.17%). Globally threatened (vulnerable, endangered, and critically endangered) migratory soaring bird species recorded in the study area surpassed 1% of the flyway population. These species include the Egyptian vulture (1.2%) and the steppe eagle (3.02%). Two other near threatened bird species; i.e., the pallid harrier (6 individuals), and the red-footed falcon (two individuals), were also observed. These results spotlight on the importance of protecting the study area as a bird migration corridor.

List of Contents

List of Contents	•••
List of Tables	V
List of Figures	VI
INTRODUCTION	. 3
Objectives of the study	6
LITERATURE REVIEW	. 7
I. Impact of Wind Farm Projects on Migratory Birds	. 7
II. Environmental Impact Assessment of Wind Farm Projects and in Cumulative Impacts	
III. Studies on Migratory Soaring Birds and Wind Farms in Egypt	17
MATERIALS AND METHODS	19
1. Description of the study site	19
2. Description of wind farms and turbines	22
3. Gabel Al Zeit as a corridor for migratory soaring birds	23
4. Monitoring bird migration	27
5. Weather Data	31
6. Monitoring bird carcasses	32
6.1. Systematic carcass search	32
6.2. Unsystematic carcass search	34
6.3 Carcass persistence trials	35
6.4. Searcher's efficiency trials	36
RESULTS AND DISCUSSIONS	38
1. International significance of Gabel Al Zeit study site	38
Bird species recorded during the study period.	38
2. Migration phenology	16

2.1. Migration altitudes	50
2.2. Migration directions	54
3. Flight behavior and wind conditions	59
5. Correlation between flight behavior and wind variables i migratory bird species	
5.1. White Stork (Ciconia ciconia)	73
5.2. White Pelican (Pelecanus onocrotalus)	79
5.3. Levant Sparrowhawk (Accipiter brevipes)	84
5.4. Steppe Buzzard (Buteo buteo vulpinus)	88
5.5. European Honey buzzard (Pernis apivorus)	93
5.6. Black Kite (Milvus migrans)	98
6. Overview of Species migration	102
7. Assessment of the fatal effect of wind turbine blades	105
7.1. Systematic carcass searches	105
7.2. Unsystematic carcass search	107
7.3. Carcass persistence	108
7.4. Fatality estimation	113
7.5. Spatial distribution of fatalities	115
SUMMARY	125
1. Bird species recorded during the study period	126
2. Migration phenology	127
3. Carcasses search assessment	128
REFERENCES	129
Annxes	
1	المسلخص العربي
4	الملخص العرب

List of Tables

Table 1: The following equipment's were available for the whole survey team.
Table 2: Wind direction and wind speed categories used during the present
study
Table 3: English names, scientific names, number of birds (records, minimum
and maximum) and percentage observed during spring 2018 in the study area.
40
Table 4: Percentage of minimum number of migratory soaring birds counted
during a field survey, spring 2018 in the study area
Table 5: Numbers, records and percentages of migratory soaring bird of
different flock sizes counted during field survey carried out during spring 2018
in the study area
Table 6: Numbers, records and percentages of migratory soaring birds counted
during different weeks of the field survey carried out during spring 2018 in the
study area
Table 7: Numbers, records and percentage of migratory soaring birds counted
during different sessions of the field survey carried out during spring 2018 in
the study area
Table 8: Numbers, records, and percentage of migratory soaring birds counted
at different altitudes in the at spring 2018 in the study area
Table 9: Flight direction and percentage of migratory soaring birds counted
during spring 2018 in the study area
Table 10: Flight direction at different altitudes and percentage of migratory
soaring birds counted during spring 2018 in the study area
Table 11: Wind direction, numbers and percentage of migratory soaring birds
counted during spring 2018 in the study area
Table 12: Wind speed, numbers and percentage of migratory soaring birds
counted during spring 2018 in the study area
Table 13: Numbers and percentages of MSB flying in different wind speeds
and wind directions in the study area during spring 2018
Table 14: Time in hours spent in observing MSBs and percentage of
observation time during each wind speed relative to total observation time 66
Table 15: Wind direction and different bird directions and percentage of
observation during spring 2018 in the study area

Table 16: Percentages and numbers of birds recorded flying at risk height in
different wind conditions during spring 2018 in the study area
Table 17: Numbers, records and percentage of white stork counted at different
altitudes in the at spring 2018 in the study area
Table 18: Percentage and numbers of white stork recorded in different weather
conditions during spring 2018 in the study area
Table 19: Numbers, records and percentage of white spelican counted at
different altitudes in the spring 2018 in the study area
Table 20: Percentage and numbers of white pelican recorded flight at different
weather conditions during spring 2018 in the study area
Table 21: Numbers, records and percentage of Levant Sparrowhawk counted
at different altitudes in the spring 2018 in the study area
Table 22: Percentage and numbers of Levant Sparrowhawk recorded flight at
different weather conditions during spring 2018 in the study area
Table 23: Numbers, records and percentage of Steppe buzzard counted at
different altitudes in the spring 2018 in the study area
Table 24: Percentage and numbers of steppe buzzard recorded flight at
different weather conditions during spring 2018 in the study area90
Table 25: Numbers, records and percentage of Honey buzzard counted at
different altitudes in the spring 2018 in the study area
Table 26: Percentage and numbers of steppe buzzard recorded flight at
different weather conditions during spring 2018 in the study area
Table 27: Numbers, records and percentage of Black kite counted at different
altitudes in the spring 2018 in the study area
Table 28: Percentage and numbers of Black Kite recorded flight at different
weather conditions during spring 2018 in the study area
Table 29: Carcasses and remains found during systematic carcass searches for
sampled turbines during Spring 2018 106
Table 30: Carcass and remains found during unsystematic carcass searches for
un-sampled turbines during Spring 2018 108
Table 31: Results of removal trials for domestic chickens and wild birds
carcasses
Table 32: Location of carcasses used for the persistence and searchers
efficiency trials
Table 33: Estimated fatality rates for different types of carcasses used in the
persistence trials

List of Figures

Fig. 1. A satellite map showing the study site location) red dot at Gulf of Suez)
and distribution of wind turbines -KFW, 240 MW wind farm project 20
Fig. 2. Turbines distribution in the study area
Fig. 3. Two vantage point's distribution in the study area
Fig. 4. A diagram showing a wind turbine and the heights of its different parts
(h, nacelle hub; d, blade) (Green Plus Report, 2018)
Fig. 5. Photo showing a wind turbines in the study area
Fig. 6. Photo showing a group of wind turbines in the study area
Fig. 7. A schematic map showing the Rift Valley/Red Sea flyway, the major
passageways through Egypt, and the location of Gabel Al Zeit and another
bottleneck IBAs. (Autumn report by Sherif Baha Eldin to MSB project,2016).
Fig. 8. A map showing the location of Gabel Al-Zeit windfarm within Gabel
Al-Zeit Bottleneck IBA, and the location of the proposed MalahetRasShukair
protected area shown (After BirdLife's sensitivity map, 2014)
Fig. 9. A satellite map showing all used VPs in the wind farm
Fig. 10. A map of wind farm showing location of sampled carcass search plots,
trials locations, and car search transect under high voltage power lines 33
Fig. 11. Numbers of the most dominant birds recorded in the study area 43
Fig. 12. Numbers and records of birds observed in the study area
Fig. 13. Percentages numbers and records of birds/records observed in the
study area
Fig. 14. Weekly distribution of numbers and records of birds observed in the
study area during spring 2018. 48
Fig. 15. Weekly percentages of numbers and records of birds observed in the
study area during spring 2018
Fig. 16. Average migration rate in morning and evening survey sessions for all
observations in the study area
Fig. 17. Numbers and percentage of migratory soaring birds counted at
different flight altitudes in the spring 2018 in the study area
Fig. 18. Percentage of flight altitudes of birds and records for soaring birds
recorded in the study area
Fig. 19. Flight direction of birds/records for soaring birds recorded in the study
area

Fig. 20. Percentage of flight direction of birds/ records for soaring birds
recorded in the study area
Fig. 21. Distribution of soaring birds in the study area on different wind
directions represented as percentages of total number of observed birds during
spring 2018
Fig. 22. Percentage of birds flying at each flight direction at different flight
altitude categories to the overall recorded birds in the study area 59
Fig. 23. Numbers of birds and records of each wind direction recorded in the
study area
Fig. 24. Percentage of birds/ records of each wind direction recorded in the
study area
Fig. 25. Distribution of flying birds in the study area on different wind
directions represented as percentages of total number of observed birds during
spring 2018
Fig. 26. Numbers of birds/ records of each wind speed recorded in the study
area
Fig. 27. Percentage of birds/ records of each wind speed recorded in the study
area
Fig. 28. Flight of bird at each wind direction with different wind speed to the
overall recorded birds in the study area
Fig. 29. Percentage of migration rate/hours of soaring birds for different wind
directions and speed classes during spring 2018 in the study area 67
Fig. 30. Migration rate/hours of soaring birds for different wind directions and
speed classes during spring 2018 in the study area
Fig. 31. Percentages of birds observed in each wind/flight direction in the
study area
Fig. 32. Percentage of birds recorded flying at below 200m (risk height) in
different wind conditions in the study area
Fig. 33. Percentage of white stork counted at different flight altitudes in the at
spring 2018 in the study area
Fig. 34. Percentage of white stork recorded flight at different weather
conditions in the study area
Fig. 35. Distribution and percentage of white stork flight of each wind
direction recorded in the study area
Fig. 36. Percentage of white pelican counted at different flight altitudes in the
at spring 2018 in the study area

Fig. 37. Percentage of white pelican recorded flight at different weather
conditions in the study area
Fig. 38. Distribution and percentage of white pelican flight of each wind
direction recorded in the study area
Fig. 39. Percentage of Levant Sparrowhawk counted at different flight
altitudes in the at spring 2018 in the study area
Fig. 40. Percentage of Levant Sparrowhawk recorded flight at different
weather conditions in the study area
Fig. 41. Distribution and percentage of levant sparrowhawk flight of each wind
direction recorded in the study area
Fig. 42. Percentage of Steppe Buzzard counted at different flight altitudes in
the at spring 2018 in the study area
Fig. 43. Percentage of steppe buzzard recorded flight at different weather
conditions in the study area91
Fig. 44. Distribution and percentage of steppe buzzard flight of each wind
direction recorded in the study area91
Fig. 45. Percentage of Honey Buzzard counted at different flight altitudes in
the at spring 2018 in the study area
Fig. 46. Percentage of steppe buzzard recorded flight at different weather
conditions in the study area96
Fig. 47. Distribution and percentage of European honey buzzard flight of each
wind direction recorded in the study area
Fig. 48. Percentage of Black Kite counted at different flight altitudes in the at
spring 2018 in the study area
Fig. 49. Percentage of black kite recorded flight at different weather conditions
in the study area
Fig. 50. Distribution and percentage of black kite flight of each wind direction
recorded in the study area
Fig. 51. Carcass persistence for chicken, passerines, and MSBs, and overall
carcasses combination
Fig. 52. Map of windfarm project area showing distribution of
carcasses/carcass remains
Fig. 53. Percentage of detected carcass and locations within the study area
during Spring season 2018

INTRODUCTION