

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

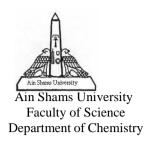
Comparative study in using natural and commercial organic coagulants for the treatment of petroleum refining unit waste water

A Thesis Submitted for Ph.D. Degree in Chemistry

 $\mathbf{B}\mathbf{y}$

Gamal Mahmoud Mohammed El-Kareish (M. Sc. 1994)

Supervised by


Prof. Dr. Wael S. I. Abou El-Magd

Professor of Organic Chemistry Faculty of Science, Ain Shams University.

Dr. Ashraf Ibrahem Shehata Hafez

General Manager of Chemistry. Egyptian Electricity Holding Company

(2022)

Comparative study in using natural and commercial organic coagulants for the treatment of petroleum refining unit waste water

A Thesis for Ph.D. Degree in Chemistry

Presented by

Gamal Mahmoud Mohammed El-Kareish

(M. Sc. 1994)

To

Department of Chemistry
Faculty of Science
Ain Shams University
Cairo, Egypt
(2022)

Ain Shams University Faculty of Science Department of Chemistry

Comparative study in using natural and commercial organic coagulants for the treatment of petroleum refining unit waste water

A Thesis for Ph.D. Degree in Chemistry

Presented by Gamal Mahmoud Mohammed El-Kareish

(M. Sc. 1994)

Thesis Advisors	Thesis Approved	
Prof. Dr. Wael S. I. Abou El-Magd	••••••	
Professor of Organic Chemistry, Faculty of		
Science, Ain Shams University.		
Dr. Ashraf Ibrahem Shehata Hafez	•••••	
General Manager of chemistry.		
Egyptian Electricity Holding Company.		

Head of Chemistry Department

Prof. Dr. Ayman Ayoub Abdel-shafi

Aknowledgment

The author wishes to refer his deep appreciation

and gratitudeTo

Prof. Dr. Wael S. I. Abou El-Magd, Professor of Organic Chemistry, Chemistry Department, Faculty of Science, Ain Shams University.

&

Dr. Ashraf Ibrahem Shehata Hafez, General Manager of Chemistry. Egyptian Electricity Holding Company

For

Suggesting the subject, interpreting the results, their valuable scientificguidance, help, and encouragement during the work of this thesis.

LIST OF ABBREVIATIONS

CTAC 3-Chloro2-hydroxy Triethyl AmmoniumChloride

BOD Biochemical oxygen demand.

COD Chemical oxygen demand.

PAM polyacrylamide.

TDS Total dissolved solid.

TGA Thermal gravimetric analysis.

FT-IR Fourier-transform infrared spectroscopy.

NOM Natural Organic Matter.

STPs sewage treatment plants.

EPA Environmental Protection Agency.

APAM Anionic polymers.

PDADMAC Poly(di-allyl –di-methyl-ammonium chloride)

ECH/DMA Epichlorohydrin/dimethylamine polymers.

CPAMs Cationic Polyacrylamides

AFEXTM Ammonia fiber expansion.

CMC Carboxymethyl cellulose.

DMF Dimethylformamide.

NTU Nephelometry turbidity Unit.

TOC Total organic carbon.

EDX Energy dispersive x-ray.

MCL Maximum contaminant level

Contents

item	Title	Pages
	Acknowledgement	
	English Summary	
1.	Introduction	1
1.1.	Water classification	3
<i>1.2.</i>	Raw water features	6
<i>1.3.</i>	Water Pollution	7
<i>1.4.</i>	Water treatment process	9
1.4.1.	Coagulation and Flocculation process	10
1.4.1.1.	Nature of negatively colloidal particles	11
1.4.1.2.	Flocculation process	12
1.4.1.3.	Coagulation process	13
1.4.1.4.	Disadvantages of the coagulation - flocculation	14
	process	
1.4.1.5.	Coagulants for the Coagulation Process	17
1.4.1.6.	Coagulants Aids	18
1.4.1.7.	Coagulation Flash mix	19
1.4.1.8.	Natural polymers	19
1.4.1.9.	The polysaccharide bio-based flocculants	21
1.4.1.10.	Corncobs and its applications	23
1.4.1.10.1.	Cellulose	25
1.4.1.10.2.	Hemicellulose	25
1.4.1.10.3.	Lignin	26
1.4.1.10.4.	Ammonia fiber expansion (AFEX TM)	27
	pretreatment process	

1.4.1.10.5.	Reactions between ammonia and	28
	lignocellulosic biomass	
1.4.1.10.5.a.	Ammonolysis reactions	28
1.4.1.10.5.b.	Maillard-type reactions	28
1.4.1.11.	Corncobs as natural Coagulants	30
1.4.2.	Sedimentation process	31
1.4.3.	Filtration Process	32
2.	Experimental	35
2.1.	Chemicals	35
2.2.	Rice starch isolation by the NaOH method	35
2.2.1.	Aminated starch Preparation	35
2.2.2.	Preparation of aminated corncobs	36
<i>2.3.</i>	Basic system and calculations	37
<i>2.3.1</i> .	Water samples investigation	38
2.3.2.	The removal efficiency	38
<i>2.4.</i>	Analyses	39
<i>2.4.1</i> .	Elemental analysis	39
2.4.2.	FT-IR measurements	39
<i>2.4.3.</i>	X-ray analysis of starch and corncbs	39
2.4.4.	Determination of Turbidity	39
2.4.5.	Determination of Organic matter	40
<i>2.4.6.</i>	Determination of conductivity and total	40
	dissolved solid (TDS)	
2.4.7.	Determination of metal ions in water	40

LIST OF FIGURES

Figures	Title	Page
1	Untreated effluent flows from oil refining	1
	factory to the river	
2	hydrologic cycle	2
3	illustrates water classification on earth	3
4	The purpose of coagulant addition	12
5	The flocs formation by coagulant addition	13
6	The flocs formation by coagulant addition	16
7	Chemical structures of major polysaccharide	21
	bio-based flocculants	
8	Chemical structures of Cellulose, Hemicellulose	23
	and Lignin	
9	Dissolved end-functionalized cellulose	24
<i>10</i>	The three phenyl propane monomers in Lignin	<i>26</i>
11	The ester linkages present in biomass which are	28
	susceptible to cleavage during the AFEX process	
<i>12</i>	Sedimentation process	31
<i>13</i>	Multimedia filter	32
14	The corncobs and its constituents	45
15	Chemical structures of Cellulose, Hemicellulose	45
	and Lignin.	
<i>16</i>	The structure of starch	<i>48</i>
<i>17</i>	Variation of Nitrogen Content (%) of Corn cops	53

working conditions (C) 19 TGA of corncobs and corncobs /3ml ammonium salt 20 Energy dispersive X-ray (EDX) of native corncobs (a) and starch (b) 21 The FTIR of native corncobs 22 FTIR of cationic corncobs 23 FTIR of aminated and native starch 24 The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobswith alum(D) 25 The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (C) , by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) 26 Effect of cationic starch dose on heavy metal removal 27 Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater 28 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater.		derivatives with deferent (NaOH) concentration.	
TGA of corncobs and corncobs /3ml ammonium salt Energy dispersive X-ray (EDX) of native corncobs (a) and starch (b) The FTIR of native corncobs FTIR of cationic corncobs The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobswith alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (A) by using corncobs with FeCl ₃ (C) and at the end of flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity	18	TGA of starch (A) and cationic starch at the best	55
Energy dispersive X-ray (EDX) of native corncobs (a) and starch (b) The FTIR of native corncobs FTIR of cationic corncobs The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobs with alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (C) and at the end of flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity		working conditions (C)	
20 Energy dispersive X-ray (EDX) of native corncobs (a) and starch (b) 21 The FTIR of native corncobs 22 FTIR of cationic corncobs 23 FTIR of aminated and native starch 24 The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobswith alum(D) 25 The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (C) and at the end of flocculation using corncobs with FeCl ₃ (D) 26 Effect of cationic starch dose on heavy metal removal 27 Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater 28 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. 29 Effect of cationic rice starch doses on turbidity	<i>19</i>	TGA of corncobs and corncobs /3ml ammonium	56
corncobs (a) and starch (b) The FTIR of native corncobs FTIR of cationic corncobs The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobs with alum(D) The floc forming due to flocculation processes by usin FeCl3 (A), at the end of flocculation by using FeCl3 (C) and at the end flocculation using corncobs with FeCl3 (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity		salt	
The FTIR of native corncobs FTIR of cationic corncobs The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobs with alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity	<i>20</i>	Energy dispersive X-ray (EDX) of native	58
FTIR of cationic corncobs FTIR of aminated and native starch The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C)and at the end of flocculation using corncobswith alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (B) , by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity		corncobs (a) and starch (b)	
The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobswith alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (A), by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Feffect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity	21	The FTIR of native corncobs	<i>59</i>
The floc forming due to flocculation processes by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C) and at the end of flocculation using corncobs with alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (I) , by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity	<i>22</i>	FTIR of cationic corncobs	59
by using alum(A), at the end of flocculation by using alum(B), by using corncobs with alum (C)and at the end of flocculation using corncobswith alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (I) , by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity	<i>23</i>	FTIR of aminated and native starch	60
using alum(B), by using corncobs with alum (C)and at the end of flocculation using corncobswith alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (I), by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity	<i>24</i>	The floc forming due to flocculation processes	<i>68</i>
at the end of flocculation using corncobswith alum(D) The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (I), by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity		by using alum(A), at the end of flocculation by	
The floc forming due to flocculation processes by usin FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (A), by using corncobs with FeCl ₃ (C) and at the end of flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity		using alum(B), by using corncobs with alum (C)a	ınd
FeCl ₃ (A), at the end of flocculation by using FeCl ₃ (I) , by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) Effect of cationic starch dose on heavy metal removal Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity		at the end of flocculation using corncobswith alum	(D)
, by using corncobs with FeCl ₃ (C) and at the end flocculation using corncobs with FeCl ₃ (D) 26 Effect of cationic starch dose on heavy metal removal 27 Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater 28 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. 29 Effect of cationic rice starch doses on turbidity	25	The floc forming due to flocculation processes by t	using
flocculation using corncobs with FeCl ₃ (D) 26 Effect of cationic starch dose on heavy metal removal 27 Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater 28 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. 29 Effect of cationic rice starch doses on turbidity		FeCl ₃ (A), at the end of flocculation by using FeCl	(B)
 26 Effect of cationic starch dose on heavy metal removal 27 Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater 28 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. 29 Effect of cationic rice starch doses on turbidity 		, by using corncobs with FeCl3 (C) and at the en	nd of
removal 27 Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater 28 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. 29 Effect of cationic rice starch doses on turbidity		flocculation using corncobs with FeCl ₃ (D)	<i>69</i>
 Effect of Ferric chloride doses on the turbidity and the organic matter of the wastewater Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity 	<i>26</i>	Effect of cationic starch dose on heavy metal	70
and the organic matter of the wastewater 28 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. 29 Effect of cationic rice starch doses on turbidity		removal	
 Effect of Ferric chloride doses on the colloidal silica and the chloride ions concentrations of the wastewater. Effect of cationic rice starch doses on turbidity 	27	Effect of Ferric chloride doses on the turbidity	72
silica and the chloride ions concentrations of the wastewater. 29 Effect of cationic rice starch doses on turbidity		and the organic matter of the wastewater	
wastewater. 29 Effect of cationic rice starch doses on turbidity	28	Effect of Ferric chloride doses on the colloidal	73
29 Effect of cationic rice starch doses on turbidity		silica and the chloride ions concentrations of the	
		wastewater.	
and organic matter of wastewater.	29	Effect of cationic rice starch doses on turbidity	74
		and organic matter of wastewater.	
30 Effect of cationic rice starch doses on the	30	Effect of cationic rice starch doses on the	75

	colloidal silica and chloride ions concentrations of	
	wastewater.	
31	Effect of cationic rice starch doses on turbidity	<i>76</i>
	of wastewater at different Ferric chloride	
	concentrations	
<i>32</i>	Organic matter removal from wastewater using	77
	combined cationic rice starch/ferric chloride	
	doses	
33	COD removal from waste water at combined	<i>78</i>
	cationic rice starch 6 mg/l with different ferric	
	chloride doses	
<i>34</i>	TSS removal from wastewater at combined	<i>79</i>
	cationic rice starch 6 mg/l with different ferric	
	chloride doses.	
<i>35</i>	Typical photograph of waste water	<i>81</i>
<i>36</i>	Jar test using ferric chloride as conventional	<i>81</i>
	coagulant in the treatment of waste water	
<i>37</i>	Turbidity and size of flock using cationic rice	82
	starch as cationic coagulant for waste water	
	treatment	
<i>38</i>	Turbidity and size of flock using ferric chloride	83
	as conventional coagulant for waste water	
	treatment	
<i>39</i>	Wastewater Basic flowchart overview	87
<i>40</i>	Water discharge Ammonia Analysis	88
41	Final discharge COD and NH3	89
42	lahoratory jar test	91

<i>43</i>	Water discharge Turbidity Removal	91
44	Water discharge Turbidity Removal	91
<i>45</i>	Monitoring of TDS and ammonia concentration	92
46	Removal of TSS	93
<i>47</i>	Removal of organic matter	94
<i>48</i>	Removal of Nitrite	95
49	Removal of Phosphate	96

LIST OF TABLES

No.	Table
name	Page
1	Effect of the temperature on the Nitrogen 50
	Content (%) of Starch and corncobs derivatives
2	Effect of the reaction time on the nitrogen 51
	content(%) of starch and corncobs derivatives
3	Effect of the NaOH on the nitrogen content (%) 52 of starch derivatives
4	Effect of the CTAC concentration on the 54 nitrogen content of starch and
5	corncobs/(CTAC) Effect of cationic starch dose on the quality of 64
	treated water
6	comparison of corncobs derivative, ferric 65 chloride and alum doses on the removal of organic matter, turbidity, hardness and colloidalsilica of water
7	The jar test results of different Alum and 66
8	corncobs concentration with chlorine injection The jar test results of different ferric chloride 67
9	and corncobs concentration Specifications of the oil refinery wastewater 71
_	Specifications of the out refinery musicinater /1

Aim of the work

Aim of the work

This study focused on exploring the possibility and evaluation of some modified natural compounds to be applied in the refinery waste water treatment as a key measure of waste water clarification processes.

The thesis was designed to investigate the following:

- i. Synthesis of modified natural compound from rice starch.
- ii. Using jar test as simulation of clarification processes which considered the most applicable way to permit the comparison of various chemicals combination for determining the optimum chemical program to establish the correct order of addition.
- iii. The products obtained by dry state process are characterized by FT-IR spectroscopy, elemental analysis (C, H, N and S) and Thermal gravimetric analysis TGA. Total dissolved solid (TDS), turbidity and conductivity were also measured.
- iv. Studying the efficiencies of cationic rice starch as a coagulant in water treatment in comparison with ferric chloride and some of commercial flocculants.

Abstract