Safaa Mahmoud

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Electronics Engineering and Electrical Communications

FPGA Implementation of Building Blocks of Conjugate Structure ACELP Speech Codec

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Degree of Master of Science in Electrical Engineering (Electronics and Communication Engineering Department)

Submitted by

Heba Ahmed El-Sayed Ahmed

B.Sc degree in Electrical Engineering HTI for Engineering and Technology, 2012

Supervised by

Prof. Dr. Abd El-Halim Abd El-Naby Zekry

Professor in Electronics and Electrical Communications Engineering Department, Faculty of Engineering, Ain Shams University

Dr. Eman Mohammed Mahmoud

Lecturer in Electronics and Electrical Communications Engineering Department, Modern Academy of Engineering and Technology

EGYPT, CAIRO

2019

Electronics Engineering and Electrical Communications

Name : Heba Ahmed El-Sayed Ahmed

Thesis Title: FPGA Implementation of Building Blocks of Conjugate

Structure ACELP Speech Codec

Degree : Master of Science in Electrical Engineering

Department: Electronics and Communications Engineering Department

Examiners' Committee

Name, Title and Affiliation	Signature
Prof. Dr. El-Sayed M. El-Rabaie Professor in Electronics and Electrical Communications Engineering Department, Faculty of Electronic Engineering, Menoufia University.	(Examiner)
Prof. Dr. Wagdy Refaat Anis Professor in Electronics and Electrical Communications Engineering Department, Faculty of Engineering, Ain Shams University.	(Examiner)
Prof. Dr.Abd El-Halim Abd El-Naby Zekry Professor in Electronics and Electrical Communications Engineering Department, Faculty of Engineering, Ain Shams University.	(Supervisor)

Date: 2019/12/30

Electronics Engineering and Electrical Communications

STATEMENT

This thesis is submitted as a partial fulfillment of Master of Science. In Electrical Engineering, Faculty of Engineering, Ain shams University.

The author carried out the work included in this thesis, and no part of it has been submitted for a degree or a qualification at any other scientific entity.

Student n	ame: Heba Ahmed El-Sayed Ahmed
Signature	
Date	/

Electronics Engineering and Electrical Communications

Researcher Data

Name : Heba Ahmed El-Sayed Ahmed

Date of birth : 22/6/1990

Place of birth : Suez, Egypt

Last academic degree : Bachelor of Science

Field of specialization : Electrical Engineering

(Electronics and Communication Engineering)

University issued the degree: HTI for Engineering and Technology

Date of issued degree : 2019

Current job : Teaching Assistant at Canal Higher Institute of

Engineering and Technology

Acknowledgment

All praise to **Allah** that good and blessings are done with his grace, who generous me in completing this work.

I would like to thank the examiners committee for their efforts in reviewing the thesis:

- -Prof. Dr. El-Sayed Mahmoud El-Rabaie
- -Prof. Dr. Wagdy Refaat Anis

No amount of thanks can express my gratitude and indebtedness to my supervisor Prof. Dr. Abdelhalim Zekry on his ongoing advice, support, encouragement and valuable suggestions. May Allah bless you. Allah gives you longevity, good health and good work.

I would like to express my sincere gratitude to my supervisor Dr. Eman Mohamed for her continuous help, guidance, advice, efforts and care. May Allah bless you.

My sincere gratitude and love to my parents, on everything in my life, continuous support, patience and their encouragement, May Allah blesses you both. Allah give both of you longevity, good health and good work.

Thesis Summary

Key words— CSACELP, Simulink, MATLAB, Visual Studio, DSK 6713, seg-SNR, LLR, MOS, PRAAT

As the emerging of real-time telecommunication systems over low bandwidth channels enforces constraints on the transmitted data rate while maintaining optimum speech quality at received destination, so speech coding techniques are being developed as waveform coder, parametric coder and hybrid coder. Hybrid coder is considered the optimal and satisfactory between speech coding algorithms to provide low bitrate with optimum speech quality.

This thesis presents one of hybrid speech coder types named Conjugate Structure Algebraic Code Excited Linear Prediction (CS-ACELP) which is nominated by International Tele-communication Union (ITU) as G.729. CS-ACELP encoder has two main stages perframe analysis and per sub-frame analysis stages. The frame analysis stage of the Intended speech coder CS-ACELP is demonstrated by three main aspects.

Firstly, CS-ACELP is software simulated using SIMULINK model which was built from scratch based on MATLAB 2019. Four different acoustic speech signals are chosen as tested signals.

Secondly, CS-ACELP is hardware implemented on TMS320C6713 DSP kit based on C++ code generated from SIMULINK model. Additional optimizations are done to provide good reduction in the processing time by 8.564 us and reduction in the memory size used by 8% with acceptable speech quality.

Thirdly, a CS-ACELP encoder/decoder with International telecommunication union (ITU) MATLAB CSACELP code is developed, and then MATLAB coder (MEX tool) is used to generate C++ files that could compile and run it into desktop PCs. This desktop application is helpful in chat applications that require low bandwidth over the Internet and low connection speed.

The implemented CS-CELP tested signals are compared with the signals based on desktop application according to different measurements tests as objective measurements such as segmented signal-to-noise ratio (seg-SNR), log-likelihood ratio (LLR), and subjective measurements such as mean opinion score (MOS) and praat software test.

These testes are used to examine the speech quality of the synthesized signals based on the implemented C++ code generated from SIMULINK against reconstructed signals from desktop application.

This comparison proved that the reconstructed signal based on "analysis-by-synthesis" desktop application was better (less noise distortion) than the SIMULINK synthesis signal because of adding error parameters that done in the decoder side that help the decoder to estimate the original signal with minimum error as possible.

List of Contents

	apter One (Introduction)	
1.1	Background	2
1.2	Thesis Motivation	2
1.3	Publications	3
1.4	Thesis Idea	3
1.5	Thesis Layout	4
1.6	Summary	5
	·	
	apter Two (Speech Coding Terminology)	
	Introduction	
	Human Speech Production	
	Speech Coding	
	Standardization	
	General CS-CELP Codec Encoder/Decoder Description	
2.6	Summary	15
Cha	apter Three (CS-ACELP System Describtion)	16
	Introduction	
3.2	Functional Description of the Encoder	17
3.3	Functional Description of the Decoder	39
3.4	Summary	47
C1.	anten Essa (CC A CEL D CIMILI INIV M. dalina)	40
	apter Four (CS-ACELP SIMULINK Modeling)	
	Introduction	
	SIMULINK Building Blocks	
	SIMULINK Blocks Connection	
	SIMULINK Simulation	
	SIMULINK Code Generation	
4.6	Summary	63
	apter Five (Digital Signal Processing Implementation)	
	Introduction	
5.2	2 TMS320C6713 Description and Functionality	65
	DSP Tool	
	TI-TMS320C6713 Implementation Methodology	
	Summary	
Cha	apter Six (Results and Disscussion)	89
	Introduction	
	Speech Performance Results	

Chapter Seven (Conclusions and Future Work)	94
7.1 Conclusions	
7.2 Future Work	95
REFERECES	
Appendix A	101
Appendix B	107
I I	······

List of Figures

Figure 2. 1 The speech human chain vocal.	7
Figure 2. 2 Block diagram of a speech coding system	8
Figure 2. 3 Speech LPC filter mathematical model.	10
Figure 2. 4 LPC encoder diagram.	10
Figure 2. 5 LPC decoder diagram.	11
Figure 2. 6 Quality versus bitrate between three coder techniques	14
Figure 2. 7 CS-ACELP Encoder's Block Diagram	14
Figure 2. 8 CS-ACELP decoder's Block Diagram	15
Figure 3. 1 CS-CELP encoder.	18
Figure 3. 2 LPC framing windowing.	
Figure 3. 3 CS-ACELP decoder.	40
Figure 3. 4 CS-ACELP decoder outline.	41
Figure 4. 1 SIMULINK opening button	
Figure 4. 2 SIMULINK Library browser.	
Figure 4. 3 CS-ACELP frame-analysis SIMULINK model.	
Figure 4. 4 LSF vector quantization building block.	
Figure 4. 5 LSF vector conversion building block	
Figure 4. 6 LSF weight computation building block.	
Figure 4. 7 LSF / LAR conversion building block	
Figure 4. 8 LSF interpolation building block	
Figure 4. 9 LSF split vector quantization building block	
Figure 4. 10 for iteration of LSF split vector quantization building block	
Figure 4. 11 LSF interpolation building block	
Figure 4. 12 weighting filter building block.	
Figure 4. 13 gamma_1 of weighting filter computation building block	
Figure 4. 14 gamma_a of weighting filter computation building block	
Figure 4. 15 gamma b of weighting filter computation building block	
Figure 4. 16 pitch gain computation building block.	
Figure 4. 17 SIMULINK simulation	
Figure 4. 18 SIMULINK code generation .	60
Figure 4. 19 SIMULINK solver code generation setup.	
Figure 4. 20 SIMULINK hardware implementation setup.	
Figure 4. 21 SIMULINK library code generation setting.	
Figure 4. 22 SIMULINK code language setting.	
Figure 4. 23 SIMULINK code generation.	63

Figure 5. 1 DSK TMS320C6713 kit board.	. 66
Figure 5. 2 DSK TMS320C6713 kit features Description	. 67
Figure 5. 3 DSK TMS320C6713 kit functional Description.	. 68
Figure 5. 4 CCS Integrated Development Environment	
Figure 5. 5 CCS creating a project.	. 70
Figure 5. 6 CCS adding .C and .h files to the project	. 70
Figure 5. 7 CCS building a project (a)	
Figure 5. 8 CCS building a project (b)	. 71
Figure 5. 9 Load the project	. 72
Figure 5. 10 CCS program level steps	. 73
Figure 5. 11 C6000 Compiler setting	. 73
Figure 5. 12 CCS target configuration setting	. 75
Figure 5. 13 CCS naming the target configuration file	. 75
Figure 5. 14 CCS target configuration file setting	. 76
Figure 5. 15 CCS debugging procedure step1	. 76
Figure 5. 16 CCS debugging procedure step 2	. 77
Figure 5. 17 CCS debugging procedure step 3	. 77
Figure 5. 18 CCS profiling procedure step 1	. 78
Figure 5. 19 CCS profiling procedure step 2	. 78
Figure 5. 20 CCS profiling view code procedure step 1	. 79
Figure 5. 21 CCS profiling view code procedure step 2	. 79
Figure 5. 22 CCS code tracing procedure step 1	. 80
Figure 5. 23 CCS code tracing procedure step 2	. 81
Figure 5. 24 Flowchart of the python code compares the mat file with DSK file producing	the
error	. 83
Figure 5. 25 Comparison between the optimized pre-emphasis signal "Male_syn.wav"	
obtained from SIMULINK versus obtained from DSK implementation	. 84
Figure 5. 26 Comparison between the optimized auto-correlation signal "Male_syn.wav"	
obtained from SIMULINK versus obtained from DSK implementation	
Figure 5. 27 Comparison between the optimized Levinson signal "Male_syn.wav" obtained	
from SIMULINK versus obtained from DSK implementation	
Figure 5. 28 Comparison between the optimized LAR signal "Male_syn.wav" obtained fro	
SIMULINK versus obtained from DSK implementation.	
Figure 5. 29 Comparison between the optimized qlsf signal "Male_syn.wav" obtained from	
SIMULINK versus obtained from DSK implementation.	. 86
Figure 5. 30 Comparison between the optimized LSF interpolated signal "Male_syn.wav"	
obtained from SIMULINK versus obtained from DSK implementation	. 86
Figure 5. 31 Comparison between the optimized RC interpolated signal "Male_syn.wav"	
obtained from SIMULINK versus obtained from DSK implementation	. 87
Figure 5. 32 Comparison between the optimized (LSF/LSP to LPC) interpolated signal	
"Male_syn.wav" obtained from SIMULINK versus obtained from DSK implementation	. 87
Figure 5. 33 Comparison between the optimized (Synthesis block) interpolated signal	
"Male_syn.wav" obtained from SIMULINK versus obtained from DSK implementation	. 88

88
92
93
93
93

List of Tables

Table 2. 1 Differents speech coder algorithms.	12
Table 3. 1 Compiler options results	33
Table 5. 1 CS-ACELP Total memory used inside the internal RAM, comparison between ordinary and optimized code	74
Table 6. 1 The segSNR evaluation test of different implemented and simulated CS-CELP Table 6. 2 The LLR evaluation test of different simulated and implemented CS-CELP	

List of Abbreviations

CELP Code-Excited Linear Prediction

CODEC Compression/Decompression

CS-ACELP Conjugate-Structure Algebraic CELP

DSP Digital Signal Processing

LAR Log Area Ratio

LLR Log Likelihood Ratio

LP Linear Predictive

LSF Line Spectral Frequency

LSP Line Spectral Pair

MA Moving Average

MOS Mean Opinion Score

MSB Most Significant Bit

MSE Mean-Squared Error

MSVQ Multistage VQ

Seg-SNR Segmented signal-to-noise ratio

SNR Signal to Noise Ratio

SVQ Split VQ

VQ Vector Quantization

WCDMA Wide Band Code Division Multiple Access.