

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

The Role of PET/CT in Assessment of Response to Treatment of Lymphoma

Thesis

Submitted for Partial Fulfillment of Doctorate Degree in Radiodiagnosis

Submitted by

Hend Yehia Ali

M.B., B.Ch., M.Sc

Under Supervision of

Prof. Dr. Ahmed Mohamed Monib

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Prof. Dr. Shaimaa Abdelsattar Mohammad

Professor of Radiodiagnosis Faculty of Medicine, Ain Shams University

Dr. Ali Hagag Ali

Lecturer of Radiodiagnosis Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2022

Acknowledgement

First of all, all gratitude is due to Allah almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

I am so grateful and most appreciative to the efforts of **Prof. Dr. Ahmed Mohmed Monib**, Professor of Radio-diagnosis, Faculty of Medicine, Ain shams University, for his kind supervision, generous help and guidance throughout the whole work.

I wish to express my thanks to **Prof. Dr. Shaimaa**Abdelsattar Mohammad, Prof of Radio-diagnosis, Faculty of Medicine, Ain shams University for her generous help and guidance & Dr. Ali Hagag Ali, Lecturer of Radio-diagnosis, Faculty of Medicine, Ain shams University for his kind assistance and guidance.

Special thanks for Ass. Prof. Dr. Mennat allah Hatem Shalaby, Ass. Prof of Radio-diagnosis, Faculty of Medicine, Ain shams University for her great effort and support.

I am indebted to my family $\mathcal L$ my friends for their support and encouragement.

List of Contents

Topics	Page
List of Abbreviations	I
List of Figures	IV
List of Tables	VIII
Introduction	1
Aim of the Work	3
Review of Literature	
Pathology of lymphoma	4
Diagnosis of lymphoma	17
Patients and Methods	
Results	55
Illustrative Cases	67
Discussion	75
Summary and Conclusion	
References	
Arabic Summary	

List of Abbreviations

Abb.	Name
¹⁸ F-FDG	¹⁸ F- FluoroDeoxyGlucose
ALP	Alkaline Phosphatase
AUC	Area Under The Curve
BM	Bone Marrow
СВС	Complete Blood Count
CECT	Contrast Enhanced CT
CHL	Classic Hodgkin lymphoma
CR	Complete Response
СТ	Computed Tomography
dL	Deciliters
DWI	Diffusion-weighted Imaging
EBV	Epstein-Barr Virus
EOT	End of Treatment
ESR	Erythrocyte Sedimentation Rate
FL	Follicular Lymphoma
GFR	Glomerular Filtration Rate
HIV	Human Immunodeficiency Virus
HL	Hodgkin's Lymphoma
HRS	Hodgkin Reed-Sternberg
ICML	International Conference on Malignant
ICIVIL	Lymphoma
IHP	International Harmonization Project
IPS	International Prognostic Score
IQR	Interquartile Range

Abb.	Name	
IRB	Institutional Review Board Approval	
IV	Intravenous	
KV	Kilo Volt	
L&H Cells	Lymphocytic & Histiocytic Cells	
LBM	Lean Body Mass	
LDCHL	Lymphocyte Depleted Classic Hodgkin	
LDCIIL	lymphoma	
LDH	Lactate Dehydrogenase	
LNs	Lymph Nodes	
LP	Lymphocyte Predominant	
LRCHL	Lymphocyte Rich Classic Hodgkin lymphoma	
MA	Milliamper	
MCCHL	Mixed Cellularity Classic Hodgkin lymphoma	
MCi	Micro Curies	
MIP	Maximum Intensity Projection	
ml	Milliliter	
Mm	Millimeter	
MRI	Magnetic Resonance Imaging.	
MTV	Metabolic Tumor Volume	
MZBCL	Marginal Zone B Cell Lymphoma	
NAD+	Nicotinamide Adenine Dinucleotide Oxidized	
NADH	Nicotinamide Adenine Dinucleotide Reduced	
nCR	Non Complete Response	
NHL	Non-Hodgkin's Lymphoma	
NPV	Negative Predictive value	

Abb.	Name
NSCHL	Nodular Sclerosis Classic Hodgkin lymphoma
PA	Postero-anterior
PET	Positron Emission Tomography
PPD	Product of Perpendicular Diameters
PPV	Positive Predictive Value
RECIL	Response Evaluation Criteria in Lymphoma
RECIST	Response Evaluation Criteria in Solid Tumors
ROI	Region of Interest
R_S	Spearman rank correlation coefficient
SUV	Standardized Uptake Value
SUVmax	Maximum Standardized Uptake Value
TLG	Total Lesion Glycolysis
US	Ultrasound
WBMTV	Whole Body Metabolic Tumor Volume
WBTLG	Whole Body Total Lesion Glycolysis
WHO	World Health Organization
X ²	Chi-square
μL	Micro liters

List of Figures

	Dist of Figures	
Fig.	Title	Page
1-1	Nodular sclerosis showing lacunar variant of R-S cells	9
1-2	Mixed cellularity Hodgkin lymphoma showing both mononucleate and binucleate Reed-Sternberg cells in a background of inflammatory cells	10
1-3	Nodular Lymphocyte predominant type showing popcorn cells	11
2-1	Computed tomography scan is from a 46- year patient with Hodgkin lymphoma at the neck level. Large lymph nodes are visible on the left side of the neck (red-shaded region)	23
2-2	A positron emission tomography (PET) scan obtained with fluorodeoxyglucose (FDG) that shows increased FDG uptake in a mediastinal lymph node	29
3-1	Axial CE CT image of a patient presented with HL shows the dimensions of left axillary L.N. 3.6 X 3.46 cm	49
3-2	Axial fused image of PET-CT of a patient presented with HL shows the quantitative assessment of left axillary L.N. SUVmax=5.9g/ml*, MTV=29.51cm3 and TLG=107.5g.	50
3-3	Coronal MIP image and Axial fused images of PET-CT of a female patient presented with HL showing the measurement of PET CT parameters of three largest target lesions at different body sites (Rt. hilar L.N. with SUVmax=6.2g/ml*, MTV=2.51cm3 and	51

Fig.	Title	Page
	TLG=11.3g, porta hepatis L.N. with SUVmax=8.7g/ml*, MTV=21.71cm3 and TLG=115.7g and Lt.Paravertebral & retroperitoneal soft tissue lesion with SUVmax=16g/ml*, MTV=181cm3 and TLG=1825.5g)	
4-1	Bar chart showing the number of assessed lesions at the different anatomical sites	56
4-2	Box-and-whisker plots of initial SUVmax in both CR and nCR groups. Whiskers represent range, bars represent the 25th and 75th percentiles and lines represent median values. Outliers are marked by colored shapes. Note that initial values of the CR group are significantly lower than the values of the nCR group Box-and-whisker plots of initial MTV in both CR and nCR groups. Whiskers represent range, bars represent the 25th and 75th percentiles and lines represent median values. Outliers are marked by colored shapes. Note that the initial MTV values of both groups did not differ significantly	58
4-4	Box-and-whisker plots of initial TLG in both CR and nCR groups. Whiskers represent range, bars represent the 25th and 75th percentiles and lines represent median values. Outliers are marked by colored shapes. Note that initial values of the CR group are significantly lower than the values of the nCR group	60

Fig.	Title	Page
4-5	Receiver operating characteristic curve analyses. The specificity and sensitivity of using initial SUVmax and initial TLG in differentiating CR and nCR groups were compared. No significant differences existed between the AUCs of initial SUVmax and initial TLG	61
4-6	Scatter diagram displaying a significant positive correlation between initial LDH and initial SUV max	62
4-7	Scatter diagram displaying a significant positive correlation between initial LDH and initial MTV	63
4-8	Scatter diagram displaying a significant positive correlation between initial LDH and initial TLG	63
4-9	Clustered column chart showing the distribution of patients with normal and elevated initial LDH levels in the CR and nCR groups	64
4-10	Clustered column chart showing the distribution of patients with normal and elevated initial ESR levels in the CR and nCR groups	65
4-11	Clustered column chart showing the distribution of patients with and without B-symptoms at initial evaluation of both CR and nCR groups. Fourteen out of sixteen patients without B-symptoms displayed a CR as opposed to 2/16 patients who displayed a nCR	66
6-1	Case 1	67

Fig.	Title	Page
6-2	Case 2	68
6-3	Case 3	69
6-4	Case4	70
6-5	Case5	71
6-6	Case6	72
6-7	Case7	73
6-8	Case 8	74

List of Tables

Table	Title	Page
1-1	Cotswold Modification of Ann Arbor Staging System	13
1-2	Staging Hodgkin Lymphoma and Risk Factors	15
2-1	International Harmonization Project Criteria for Assessment of Response to Therapy for Lymphoma	32
2-2	Revised Response Criteria for Lymphoma: Lugano Classification	35
2-3	Comparison between Lugano Lymphoma Classification and RECIL 2017	38
4-1	Distribution of all patients according to treatment response	57
4-2	Comparison between quantitative PET/CT parameters of the CR and nCR groups	58
4-3	The sensitivities, specificities, PPV, NPV, accuracies, AUC and P values of the optimum threshold values of the quantitative PET/CT parameters for differentiation of the CR from the nCR group.	61
4-4	Correlations between the initial LDH levels and initial PET/CT parameters and their statistical significance	62

Introduction

Lymphomas are one of the most common solid tumors. They are divided into two main categories, Hodgkin's lymphoma (HL) and non-Hodgkin's lymphoma (NHL) (*Singh et al.*, 2020).

Nowadays, ¹⁸FDG PET/CT plays a great role in its management with various applications like staging and evaluation of individual chemosensitivity to treatment and subsequently to adapt further therapy. Universally, response assessment of lymphoma has mostly been achieved using visual criteria, Deauville five-point scale, that became the international standard in 2014 (*Voltin et al.*, 2020).

Functional quantitative parameters studies play a great role in oncologic management. The universal metabolic quantitative parameter is the SUVmax, which represents the maximum voxel value of SUV in the tumor reflecting the tumor glucose metabolism of the most aggressive cell component (*Im et al.*, 2018). However, SUVmax value is retrieved from only one voxel which makes it sensitive to image noise. Therefore, it is impacted by various patient characteristics and imaging parameters being variable with partial volume effect, body composition, uptake period, and plasma glucose level, or

mixed effects. On the other hand, MTV is a measurement of the viable tumor fraction, and can better estimate tumor burden. The product of multiplying the mean SUV and the MTV, yields the TLG representing the metabolic burden of disease that depends on both tumor volume and glucose utilization rate. Thus MTV or TLG may provide additional valuable information for prediction of tumor reaction to treatment (*Xie et al.*, 2016). Most studies are concerned with whole body MTV (WBMTV) and whole body TLG (WBTLG), with few available studies on target lesions' MTV and TLG.

In this study, our goal was to determine the predictive value of both MTV and TLG of target lesions instead of WBMTV and WBTLG (which are time consuming and need advanced software) by using the new Response Evaluation Criteria in Lymphoma 2017 to improve PET-CT ability in response assessment to treatment (*Younes et al.*, 2017).

Moreover, although the availability of many studies searching the association between TLG and MTV with LDH in various malignancies and lymphoma types; yet, there were few available studies concerning HL (*Li et al.*, 2019). We investigated the correlation of TLG and MTV with serologic tumor marker LDH in HL patients.

Aim of the Work

The aim of this study is to explore the prognostic value of PET/CT in Hodgkin lymphoma.