

Role of Lung Ultrasound in the Diagnosis and Follow-up of Neonatal Respiratory Disorders

Ehesis

Submitted for Partial Fulfillment of MD Degree in Pediatrics

By

Osama Abd-Elhady Eldafrawy

MB BCh, Master degree of Pediatrics

Supervised by

Prof. Nehal Mohamed El Raggal

Professor of Pediatrics Faculty of Medicine- Ain Shams University

Prof. Laila Abd-Elghaffar Hegazy

Professor of Pediatrics
Faculty of Medicine- Ain Shams University

Prof. Hossam Mousssa El- Sayed Sakr

Professor of Radiodiagnosis Faculty of Medicine- Ain Shams University

Dr. Rania Ibrahim Hossni Ismail

Assistant Professor of Pediatrics Faculty of Medicine- Ain Shams University

Dr. Yasmin Aly Farid Mohamed Aly

Lecturer of Pediatrics
Faculty of Medicine- Ain Shams University

Faculty of Medicine- Ain Shams University
2020

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof.** Mehal Mohamed El Raggal, Professor of Pediatrics - Faculty of Medicine-Ain Shams University for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Laila Abd- Elghaffar Hegazy**, Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I wish to introduce my deep respect and thanks to **Prof.** Hossam Mousssa El-Sayed Sakr, Professor of Radiodiagnosis, Faculty of Medicine, Ain Shams University, for his kindness, supervision and cooperation in this work.

I am deeply thankful to **Dr. Rania Ibrahim Hossni Ismail**, Assistant Professor of Pediatrics,
Faculty of Medicine, Ain Shams University, for her great
help, active participation and guidance.

I would like to express my hearty thanks **Dr. Uasmin Aly Farid Mohamed Aly,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her support till this work was completed.

Osama Abd-Elhady Eldafrawy

Tist of Contents

Title	Page No.
List of Tables	i
List of Figures	ii
List of Abbreviations	vii
Introduction	1
Aim of the Work	4
Review of Literature	
Respiratory Distress in the Neonates	5
Ultrasound Findings in Neonatal Respiratory Disea	ses42
Patients and Methods	62
Results	72
Case Presentation	92
Discussion	116
Summary	127
Conclusion	130
Recommendations	132
References	134
Arabic Summary	

Tist of Tables

Table No.	Title	Page No.
Table (1): Table (2): Table (3):	Down's score for full terms Silverman score for preterms Etiologies of respiratory distress in neonate	7
Table (4): Table (5):	Plain radiography staging of RDS Stocker Classification System Congenital Pulmonary Air Malformations.	16 of rway
Table (6):	Lung ultrasound diagnostic criteria neonatal respiratory diseases	a for 61
Table (7):	Down's score	
Table (8):	Plain radiography staging of RDS	66
Table (9):	Lung ultrasonic manifestations different respiratory distress disorde our studied group.	rs in 84
Table (10):	Demographic, clinical data, ventila support and surfactant therapy of studied neonates	the
Table (11):	Echocardiography findings	86
Table (12):	Comparison of diagnoses obtained by ultrasonography and plain X – ray on admission	chest
Table (13):	Comparison of diagnoses obtained ultrasonography and plain radiography	l by aphy
Table (14):	on day 7 of admission. Sensitivity, specificity and accuracy regard LUS.	y as 89
Table (15):	Agreement between LUS and Chest 2 (kappa test)	-

Tist of Figures

Fig. No.	Title	Page	No.
Figure (1):	Transient tachypnea of the newborn (T Chest radiograph reveals perihilar inter markings and right fissural f characteristic of TTN	titial Iuid,	19
Figure (2):	Transient tachypnea of the newborn (T Chest radiograph demonstrates peril interstitial markings, which can be with TTN from the retained fetal lung fla	TN). hilar seen	
Figure (3):	X-ray showing Stage 1 RDS: slight retic (slight granular) decrease in transparen the lung, no certain difference to no findings	cular cy of rmal	
Figure (4):	X-ray showing Stage 2 RDS: Soft decreae transparency with an aerobronchog which overlaps the heart (always a sig	se in ram, gn of	
Figure (5):	an alveolar lung reaction)	, but in agm	
Figure (6):	X-ray showing Stage 4 RDS: White I practically homogenic lung opacity	ung:	
Figure (7):	Meconium aspiration with peril opacities	hilar	
Figure (8):	Neonatal pneumonia complicated by a sided pneumothorax. Note the upper lob space shadowing on both sides	e air	23
Figure (9): Figure (10):	Right upper and lower lobe pneumonia Bilateral pulmonary interstitial emphys		
Figure (11):	(PIE)	titial	
Figure (12):	emphysema (PIE) on the right side Chest x-ray showing right sided ple effusion		28
Figure (13):	Showing atelectasis of the right upper. The endotracheal tube is positioned corre		

Fig. No.	Title Page No.
Figure (14):	Complete atelectasis of the left lung resulting from selective intubation, the distal end of the endotracheal tube being located in the right bronchus
Figure (15):	Bronchopulomonary dysplasia (BPD). Chest radiograph of a neonate with bronchopulmonary dysplasia demonstrates diffuse granular opacities with more focal consolidation in the right lung)
Figure (16):	A frontal radiograph of the chest in a neonate shows marked overdistention of the left upper lobe with mediastinal shift to the right
Figure (17):	Chest radiograph of infant at 1 hour of life, showing left diaphragmatic hernia, displacement of air-filled viscera into the hemithorax and a marked shift of mediastinum and heart
Figure (18):	Frontal chest radiograph showing mixed increased density and subtle overinflation with lucency in the right mid- and lower zone
Figure (19):	Anatomical drawing fused with corresponding Ultrasound image demonstrating the superficial chest wall structures
Figure (20):	Normal lung pattern. Longitudinal scan is showing the ribs, pleural line, and A-lines 4'
Figure (21):	B-line. Those reaching the edge of the screen are called B-lines. B-lines project from the pleural line to the edge of the screen, erase A-lines, and move
Figure (22):	Synchronously with respiratory movement
Figure (23):	Respiratory distress syndrome on lung ultrasonography

Fig. No.	Title	Page No.
Figure (24):	Respiratory distress syndrome	51
Figure (25):	Pneumonia on lung ultrasonography	52
Figure (26):	Lung point in a patient with pneumotho	rax54
Figure (27):	Pulmonary atelectasis on	lung
	ultrasonography	
Figure (28):	Transient tachypnoea of the newborn (T	TN)57
Figure (29):	Meconium aspiration syndrome on	lung
	ultrasonography	57
Figure (30):	Pleural effusion appears as an ane	choic
_	space between the visceral and par	
	pleura	59
Figure (31):	Bronchopulmonary dysplasia	60
Figure (32):	DLP- double lung point which is the	main
	diagnostic features of TTN on LUS	73
Figure (33):	RDS 1.thick pleural line 2.bilateral v	
	Lungs, 3.consolidation with	air
	bronchograms	74
Figure (34):	LUS showed 1.irregular pleural line2.	lung
	consolidation and 3.air bronchograms	76
Figure (35):	LUS showed 1. compact b	line,
	2. subpleural Lung consolidation	
	3. Multiple Atelectasis with	
	bronchograms	
Figure (36):	LUS with B & M modes showed 1.	_
	point, 2. absent B lines in the are	
	pnoumothorax (absent seashore sign)	
Figure (37):	LUS showed atelectatic right lung with	_
	consolidations and multiple	
	bronchograms.	
Figure (38):	US image of the right costo-diaphragi	
	region showing mild right pleural effusion	
Figure (39):	LUS of LEFT LUNG showed 1. Abse	
	lines at the area of the defect 2. presence	
	multi-layered area with hypere	
	contents typical of the normal gut inste	
	the normal pulmonary parenchyma	
	Disturbed pleura at the affected area	82

Fig. No.	Title	Page No.
Figure (40):	Plain x ray chest AP view shows increase bronchovascular markings	
Figure (41):	US image showing double lung point wis diagnostic feature of TTN	hich
Figure (42):	US image of the right costo-diaphragm region showing mild right pleural effu	natic
Figure (43):	Plain X ray chest AP view showing bilat white lung denoting RDS stage 4 (be surfactant therapy).	eral efore
Figure (44):	LUS image showing 1. thick pleural 2.bilateral white Lung, 3.consolidation vair bronchograms denoting findings in 1	line with RDS
	(before surfactant therapy)	
Figure (45):	CXR after surfactant therapy	
Figure (46):	LUS on day 2 after birth showed improvement in lung aeration and presence of compact B lines	still
Figure (47):	LUS shows normal pleura, presence normal A lines and absent B lines or l	e of
Figure (48):	atelectasis	tion nital
Figure (49):	LUS showed 1. Irregular pleural line	e 2.
Figure (50):	Consolidation and 3. Air bronchograms Plain X ray chest AP view showed bilat lung infiltrates denoting Mecon	eral ium
Figure (51):	Aspiration SyndromeRight LUS showed 1.compact b 1.2.subpleural consolidation and 3. L	line, Jung
Figure (52):	atelectasis with air bronchograms LUS with M mode showed 1. Lung por 2.absent B linens in the area proumothrax	oint, of
Figure (53):	LUS showed the same patient with M mo	
Figure (54):	CXR showed inserted right chest tube	

Fig. No.	Title	Page No.
Figure (55):	CXR showed areas of atelectasis and	_
	collapse in the right lung	
Figure (56):	LUS at 7th day of admission sh	
	disturbed pleural line, subpl	
	consolidation with static air bronchgra	
	the upper right lung and compact B lin	
T: (FF)	the right lower lung area	
Figure (57):	Plain X ray chest AP view showing left	
T' (FO)	congenital diaphragmatic hernia	
Figure (58):	LUS of LEFT LUNG showed 1. Abse	
	lines at the area of the defect 2. presence	
	multi-layered area with hypere	
	contents typical of the normal gut inste	
	the normal pulmonary parenchyma	
F: (50)	Disturbed pleura at the affected area	
Figure (59):	LUS of the same patient showed the	
	finings with absent diaphragm at the	
F' (00)	side defect.	
Figure (60):	Initial CXR showed: 1. Coiled orogastric	
	at the upper oesohagus, 2. right atelec	
	in the upper and middle right lung's a	
	areas with mildly shifted mediastinu	
E: (C1).	the right side and excess abdominal air.	
Figure (61):	LUS showed at electatic right lung with	_
	consolidations and multiple	
Eigene (69).	bronchograms.	
Figure (62):	Practical approach to the difference diagnosis between the main cause	
	diagnosis between the main cause	
	respiratory distress in newborns	133

Tist of Abbreviations

Abb.	Full term
BPD	Bronco-pulmonary dysplasia
	Complete Blood Picture
	Capillary Blood Gases
<i>CDH</i>	Congenital diaphragmatic hernia
	Congenital diaphragmatic hernia
<i>CRP</i>	C - reactive protein
CXR	Chest $X Ray$
<i>DLP</i>	Double Lung Point
DS	Down Score
LUS	Lung Ultrasound
<i>MABP</i>	Mean Arterial Blood Pressure.
<i>MAS</i>	Meconium Aspiration Syndrome
<i>NICU</i>	Neonatal Intensive Care Unit
NRDS	Neonatal Respiratory Distress Syndrome
<i>PAN</i>	Pulmonary Atelectasis of the Newborn
<i>PE</i>	Pleural Effusion
<i>PIE</i>	Pulmonary Interstitial Emphysema
POC-US	Point-of-care ultrasound
<i>PPHN</i>	Persistent Pulmonary Hypertension
<i>RBS</i>	Random Blood Sugar
<i>SAS</i>	Silverman Anderson
TTN	Transient tachypnea of the newborn

Introduction

Very year, an estimated 2.9 million babies die in the neonatal period (the first 28 days of life), accounting for more than half of the under-five child deaths in most regions of the world, and 44% globally. The majority (75%) of these deaths occur in the first week of life, with the highest risk of mortality concentrated in the first day of life. Ninety-nine percent of neonatal deaths occur in low- and middle-income countries; south-central Asian countries experience the highest absolute numbers of neonatal deaths, while countries in sub-Saharan Africa generally have the highest rates of neonatal mortality (*Leigh et al.*, 2017).

Respiratory distress is one of the most common problems neonates encounter within the first few days of life. According to the American Academy of Pediatrics, approximately 10% of neonates need some assistance to begin breathing at birth, with up to 1% requiring extensive resuscitation. Other reports confirm that respiratory distress is common in neonates and occurs in approximately 7% of babies during the neonatal period. Respiratory disorders are the leading cause of early neonatal mortality (0–7 days of age), as well as the leading cause of morbidity in newborn, and are the most frequent cause of admission to the special care nursery for both term and preterm infants In fact, neonates with respiratory distress are 2–4 times more likely to die than neonates without respiratory distress In the

United States, the mortality of neonatal respiratory failure is approximately 11%, and the rate can go up to 32% in China (Hui et al., 2018; Leigh et al., 2017).

Respiratory disorders like Neonatal respiratory distress syndrome (NRDS) and transient tachypnea of the newborn (TTN) are the most frequent diseases. Pneumothorax, amniotic fluid aspiration, pneumonia, pulmonary hemorrhage, pleural effusions, congenital lobar emphysema, and diaphragmatic hernias are also lung conditions that lead to respiratory distress in the early neonatal period (Liu et al., 2014; Wood & Thomas, 2015).

Neonatal respiratory diseases are currently diagnosed on the basis of clinical signs and plain chest X-ray (CXR) which often does not allow an accurate diagnosis and could result in improper or delayed specific therapies (Francesco et al., 2013).

According to one study, the risk of cancer induction in infants receiving a single small dose of radiation is 2-3 times higher than the average population and 6–9 times higher than the risk from an exposure of a 60-year-old patient (Hui et al., 2018).

In addition it has been estimated that the average extremely low birth weight infant will have 31 radiographs taken from birth to NICU discharge (Wilson et al., 1996).

Consequently, in the past several years lung ultrasound (LUS) has become one of the most exciting applications in the field of the neonatal point-of care ultrasound (POC-US).

Several recent articles have found ultrasound imaging to be an equal, if not a more effective diagnostic modality than X-ray. LUS is quicker, less expensive and it does not expose patients to the increased risks inherent in exposure to ionizing radiation (Kurepa et al., 2018; Corsini et al., 2018 & 2020).

LUS has proved to be useful in the evaluation of many different and important neonatal diseases include respiratory distress syndrome (RDS), transient tachypnea of the newborn (TTN), pneumonia of the newborn (PN), pulmonary atelectasis of the newborn (PAN) and pneumothorax (Copetti & Cattarossi, 2007).

Lung ultrasound can be very useful in neonates and children. The advantage in neonates that is related to their anatomical features (thinner chest wall, smaller thoracic width, and lung mass) facilitates LUS imaging that allows an optimal, although still indirect, visualization of the lungs (Lichtenstein, 2014).

Lung ultrasound imaging is especially valuable since it is a relatively easy-to-learn how to apply, is less technically demanding than other sonographic examinations and is free of radiation. In adults LUS is not only superior to the physical examination and chest X-ray, but even comparable to CT for many diagnoses. Pneumonia, pulmonary oedema, pulmonary embolism, asthma, chronic obstructive pulmonary disease and pneumothorax can be assessed with sensitivity and specificity ranging from 90 to 100% (Touw et al., 2015).

AIM OF THE WORK

This study aims to assess the diagnostic utility of lung ultrasonography (LUS) for detection, evaluation and differentiation of variable respiratory disorders of the newborn.