

بسم الله الرحمن الرحيم

سبحه المعلومات الجامعي ASUNET @

شبكة المعلومات الجامعية

التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمحة يعيدا عن الغيار

بعض الوثائق

الأصلية تالفة

-C-02-502-

بالرسالة صفحات

لم ترد بالأصل

A MULTI-CARRIER CDMA MOBILE COMMUNICATIONS SYSTEM EMPLOYING PRE-RAKE AND DIVERSITY

B18330

Fatma Abd El-Karim Kamel Newagy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements For the Degree of
MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2002

A MULTI-CARRIER COMA MOBILE COMMUNICATIONS SYSTEM EMPLOYING PRE-RAKE AND DIVERSITY

Ву

Fatma Abd El-Karim Kamel Newagy

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfillment of the

Requirements For the Degree of

MASTER OF SCIENCE

ίn

ELECTRONICS AND COMMUNICATIONS

Under the Supervision of

Prof. Dr. Emad K. Al-Hussaini Dr. Hebatallah M. Mourad

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

2002

A MULTI-CARRIER CDMA MOBILE COMMUNICATIONS SYSTEM EMPLOYING PRE-RAKE AND DIVERSITY

By

Fatma Abd El-Karim Kamel Newagy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE

in

ELECTRONICS AND COMMUNICATIONS

Approved by the Examining Committee:

Prof. Dr. Emad K. Al-Hussaini

Main advisor E.K. Al- Hussahii

Dr. Hebat-allah M. Mourad

Prof. Dr. Salwa H. El-Ramly

Advisor Hebrt-Allah Moured
Member Salwa St Rumly

Prof. Dr. Magdi Fekry

Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

2002

Abstract

In this thesis a combination of orthogonal frequency division multiplexing (OFDM) and code division multiple access (CDMA) has been proposed for application in a mobile personal communications system. This is called Multicarrier (MC) CDMA system. It combines a high spectral efficiency with an immunity to channel dispersion. Furthermore, instead of building a rake receiver in the mobile unit (MU), the base station (BS) can pre-rake the signal before transmission in the downlink using the channel impulse response estimated from the uplink. The mobile unit uses a conventional receiver and still achieves approximately the same performance as in the case of the rake receiver. For further improvements, dual transmitter diversity is employed to combat fading. Theoretical and simulation results are obtained for the system under consideration. Depicted results show appreciable improvements when compared with those previously considered in the literature.

Acknowledgement

The author wishes to express her gratitude to Professor Emad K. Al-Hussaini who supervised this work and gave his valuable advice and assistance during different phases of this work. The author owns him most of the success of this work. Grateful thanks to Dr. Hebatallah M. Mourad for her great assistance and advice during this work. I really want to thank them for their lovely manner and patience in many situations. The author is thankful to her family for their support.

Table of Contents

	Pago
Abstract	iv
Acknowledgment	v
Table of contents List of Symbols and Abbreviations List of Tables	vi
	ìx
	. xii
List of Figure Captions	xiii
1. Introduction	. 1
2. Pre-rake System in TDD/CDMA	4
2.1. Introduction	4
2.2. Multipath Channel Model	4
2.3. The Rake Combination	5
2.4. The Pre-rake Concept	7
2.5. Theoretical Analysis for Pre-rake Combiner	9
2.5.1. The Desired Signal	11
2.5.2. Self Interference	11
2.5.3. Multiple Access Interference	14
2.5.4. The Probability of Error	17
2.6. Numerical Results and Discussion	18
3. Overview of Multi-Carrier Techniques	22
3.1. Introduction	22
3.2. Historical Perspective	22
3.3. OFDM Versus Other Techniques	26
3.4. The OFDM System Model	28
3.4.1. OFDM Transceiver	29
3.4.2. Guard Time and Cyclic Extension	30
3.4.3. OFDM Analysis	32

3.4.4. Transmission Model	32
3.5. Multi-Carrier Techniques	33
3.5.1. The MC-CDMA System	34
3.5.2. The MC-DS-CDMA System	36
3.5.3. Comparison of Two Types of Multi-carrier Techniques	38
3.6. The Sensitivity of MC-CDMA to Synchronization Errors.	38
3.6.1. Carrier Phase Error	38
3.6.1.1. Constant Phase Error	39
3.6.1.2. Carrier Frequency Error	39
3.6.1.3. Carrier Phase Jitter	3 9
3.6.2. Timing Error	39
3.6.2.1. Constant Timing Offset	40
3.6.2.2. Clock Frequency Offset	40
3.6.2.3. Timing Jitter	40
3.6.3. The Effect of Synchronization Errors	40
3.7. Multi-Carrier Modulation (MCM) Applications	41
I. MC-CDMA System Employing Pre-rake	42
4.1. Introduction	42
4.2. The Proposed System Model	42
4.3. System Analysis	45
4.3.1. The Desired Signal	46
4.3.2. Self Interference	46
4.3.3. Same User and Other Subcarrier Interference	48
4.3.4. Other Users and Same Subcarrier Interference	49
4.3.5. Other Users and Other Subcarriers Interference	51
4.3.6. The Probability of Error	52
4.4. Theoretical and Simulation Results	52
4.5. Conclusions	62
5. MC-CDMA System Employing Pre-rake and Diversity	63
5.1. Introduction	63

5.2. Types of Diversity Techniques	64
5.2.1. Transmitter Diversity	64
5.3. Combining Techniques	66
5.3.1. Maximal Ration Combiner	66
5.4. The Proposed System Employing Transmitter Diversity	68
5.5. Theoretical and Simulation Results	70
5.6. Conclusions	75
6. Conclusions and Suggestions for Future Research	77
References	79

Symbols & Abbreviations

Symbols 1

 $a_k(t)$ The Pseudo noise (PN) code for user k. β_{k} The channel gain for path ℓ and user k. The channel gain for path ℓ and subcarrier m and user k. $\beta_{k,m,\ell}$ $b_k(t)$ The data stream for user k. $b_{i.m}$ The input data at time instant l and subcarrier m, $C_{k,l}(m)$ The discrete aperiodic cross-correlation function between users k, 1. $h_k(t)$ The complex low-pass impulse response of the channel for user k. $h_{k,m}(t)$ The complex low-pass impulse response of the channel for user kand subcarrier m. K The total number of users. L The number of channel paths. M The number of subcarriers in multi-carrier systems. N The spreading factor of spread spectrum systems. n(t)Zero mean additive white gaussian noise (AWGN) with two sided power spectral density $N_o/2$. p The transmitted power. $r_k(t)$ The received signal at user k. The received signal at user k and subcarrier m. $r_{km}(t)$ $r^{0}(t)$ The received signal from the transmitted jth antenna. $S_k(t)$ The down-link transmitted signal for user k. $S_{k,m}(t)$ The down-link transmitted signal for user k and subcarrier m. TThe data bit duration. T_s The data symbol duration. $T_{\rm C}$ The pseudo noise (PN) code chip duration. T_{CP} The length of cyclic prefix. T_{o}

The OFDM symbol duration.

 U_k The normalizing factor that keeps the instantaneous transmitted

power constant regardless of the number of channel paths.

 $\gamma_{k,\ell}$ The channel phase for user k and channel path ℓ .

 $\gamma_{k,m,\ell}$ The channel phase for user k and channel path ℓ and subcarrier m.

 ω_m The orthogonal frequency of subcarrier m.

Y_i The SNR for one branch from the transmit antenna i.

Abbreviations

ADSL Asymmetric Digital Subcarrier Lines.

AWGN Additive White Gaussian Noise.

BER Bit Error Rate.

BPSK Binary Phase Shift Keying.

BS Base Station.

CDMA Code Division Multiple Access.

CP Cyclic Prefix.

DAB Digital Audio Broadcasting.

DFT Discrete Fourier Transform.

DS-SS Direct Sequence Spread Spectrum.

DVB Digital Video Broadcasting.

ETSI European Telecommunications Standards Institute.

FDM Frequency Division Multiplexing.

FFT Fast Fourier Transform.

HDSL High-bit-rate Digital Subcarrier Lines.

HDTV High-definition Television.

ICI Inter Carrier Interference.

1FFT Inverse Fast Fourier Transform.

ISI Intersymbol Interference.

LAN Local Area Network.

MAI Multiple Access Interference.

MC-CDMA Multi-carrier CDMA.