

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

The Role of Rock Alteration in the Distribution of Uranium and Associated Elements in the Um Bogma Formation at Wadi Nasib Area, Southwestern Sinai, Egypt.

by

Omnia Tarik Elsayed Amer

B.Sc., Geology, Zagazig University (2008) M. Sc., Geology, Zagazig University (2013) Assistant Lecturer, Rock Studies Department, Research Sector, Nuclear Materials Authority, Egypt

Supervised by

Prof. Dr. Mohamed M. Abu-zeid

Professor of Mineralogy and Sedimentary Petrology, Faculty of Science, Ain Shams University

Prof. Dr. Ashraf R. Baghdady

Professor of Sedimentary Petrology, Faculty of Science, Ain Shams University Prof. Dr.
Ibrahim E. El- Aassy
Professor of Uranium Geology.

Nuclear Materials Authority

Prof. Dr. Ehab K. Abu- zeid Professor of Mineralogy, Nuclear Materials Authority

A Thesis Submitted to the Geology Department,
Faculty of Science, Ain Shams University

In Partial fulfillments of the requirements of the Ph.D. Degree in Science (Geology)

2022

Validity of Ph.D. Thesis of Science (Geology)

Student name: Omnia Tarik Elsayed Amer

Supervisory Authority

Thesis title: The Role of Rock Alteration in the Distribution of Uranium and Associated Elements in the Um Bogma Formation at Wadi Nasib Area, Southwestern Sinai, Egypt.

Degree: Assistant Lecturer, the Nuclear Materials Authority, Egypt.

1 0		
Prof. Dr. Mohamed M. Abu-zeid	Ain Shams University.	
Prof. Dr. Ibrahim E. El-Aassy	The Nuclear Materials Authority.	
Prof. Dr. Ashraf R. Baghdady	Ain Shams University.	
Prof. Dr.Ehab K. Abu-zeid	The Nuclear Materials Authority.	
Examiners Committee		
Prof. Dr. Mostafa H.Y. Hashad	Suez-Canal University.	
Prof. Dr. Bothina M.M. Mousa	The Desert Research Center.	
Prof. Dr. Mohamed M. Abu-zeid	Ain Shams University.	
Prof. Dr. Ibrahim E. El-Aassy	-	
——————————————————————————————————————		
Date of discussion of the dissertation:	5 / 3 / 2022	
Department council approval date:	/ /	

Employee Signature

Date of approval of the faculty board:

Date of approval of the university council:

Director of Studies Department Signature

/ /

Faculty secretary

كلية العلوم -11566 شارع الخليفة المامون – العباسية- القاهره جمهورية مصر العربية Faculty of Science, Ain Shams University-11566Abbassia-Cairo-Egyp

سوره العلق ايه (5)

To...

I dedicate this work to my lovely family to whom I owe all my life \dots

Father, Prof. Dr. Tarik Amer...

Mother, Mrs. Azza Abaza

Sister, Mrs. Angie

and

my lovely son: ALI Gad

Acknowledgements

Praise to ALLAH, Lord of the worlds for showing me the right path and helping me to complete this work by the grace of whom, most beneficent and most merciful.

The author would like to express her appreciation to the Geology Department, Faculty of Science, Ain Shams University and the Nuclear Materials Authority (NMA) for providing the facilities during the progress of this research work.

The author is deeply indebted to the supervisors of this thesis **Prof. Dr**Mohamed M. Abu-zeid, **Prof. Dr** Ashraf R. Baghdady (Geology Department,
Faculty of Science, Ain Shams University), **Prof. Dr. Ibrahim E. El-Aassy and Prof.**Dr. Ehab K. Abu-zeid (The Nuclear Materials Authority) for their sincere guidance,
fruitful discussions and criticism when needed, scientific aids, reviewing the entire
manuscript and continuous encouragement throughout the progress of this work.

Special thanks are due to **Prof. Dr. Yehia M. Dawood** for his sincere help, fruitful discussions and carful revision of the geochemistry chapter in this thesis.

The author is grateful to all her colleagues and the staff members of the Rock Studies Department, Research Sector (NMA) for their co-operation and encouragement during this work. Special thanks are due to Prof. **Dr. Gehan Ali** (Head of ESEM lab) for her endless support and help.

Deep thanks are extended to all my colleagues in the Nuclear Materials Authority especially **Prof. Dr. Enass El-Sheik, Dr. Hanaa Abu Kohziem, Dr. Mohamed Hussien, Dr. Hany Hasan, Dr. Sameh Nigm** and all who helped me in a way or another to finish this work.

I would like to express my deep gratitude to all my family members for their support, encouragement and advices during the progress of this work.

Omnia Tarik Elsayed Amer

Abstract

The Lower Carboniferous Um Bogma Formation in Allouga, Abu Thor and Talet Seleim localities in Wadi Nasib area consists of three members made up of variably abundant siliceous, argillaceous and calcareous rocks together with ironstones. The formation hosts mineralizations of radioactive, rare and trace elements in addition to base metals.

The petrographic examination of the Um Bogma rock samples revealed that the siliceous rocks are represented by sandy siltstones and sandstones. The argillaceous rocks are made up of claystones, mudstones and gibbsite, whereas the calcareous rocks consist of limestones and dolostones.

The Um Bogma altered rocks are composed of large assemblages of essential and accessory minerals of mixed primary and secondary origin. Their heavy fractions are rich in radioactive, trace- and base metals - bearing minerals. These minerals are represented by uranophane, thorite, uranothorite, xenotime, autonite, zircon, monazite, pyrite, chalcopyrite, chalcanthite, ilmenite, apatite, colombite, celestobarite, chromospinel, hemimorphite, jarosite, plumbojarosite, cotounite and native nickel.

The mineral and chemical compositions of the studied Um Bogma rocks indicate derivation from rhyolites and, to a lesser extent, dacites source rocks. The depositional environments of the Um Bogma limestones in Talet Seleim locality was the most reducing as compared to those of Allouga and Abu Thor localities. Generally, these environments were

characterized by physico-chemical conditions suitable for the fixation of several elements especially uranium and copper.

Alteration processes largely modified the original mineralogical and chemical composition of the studied Um Bogma rocks. Ascending hydrothermal solutions caused a significant alteration of the sedimentary country rocks especially those constituting the unconformity zone between the basement rocks and the overlying sedimentary succession. Also, this zone and the younger rocks were subjected to several alteration processes as a result of varying degrees of chemical weathering under warm and humid climatic conditions. Applying several bivariant and multivariant diagrams for the major elements revealed that these processes resulted in the formation of different types of laterites, Al -rich minerals, Fe and Mn oxides and bauxitic –ferritic kaolinite. They involved also sericitization and chloritization of the rocks in addition to the dolomitization of the original limestones.

The concentrations of the radioactive, rare and trace elements as well as base metals in the Um Bogma altered rocks were compared to those of UCC in order to determine their relative degrees of enrichment or depletion. The results obtained revealed that these processes varied among the different rock types and localities. Uranium was mobilized during epigenesis and subsequently enriched in some altered rocks especially those of Abu Thor and Allouga localities. Also, alteration resulted in the enrichment of: (i) Cu in all the calcareous rocks; (ii) Ba and Sr in those of Abu Thor locality; (iii) Pb and Y in those of Abu Thor and Allouga; and (iv) Ni and Zn in the argillaceous rocks of Allouga and Talet Seleim localities. Generally, the altered calcareous rocks of Abu Thor locality are the most diagenetically enriched in most of the trace elements and base metals.

CONTENTS

Title	Page
CHAPTER I	
INTRODUCTION	
	1
General statement 1.1. Location and topography	1
1.2. Previous work	3
1.3. Aim of the present work	
1	15
CHAPTER II	
MATERIALS AND METHODS OF STUDY	
2.1. Field work	16
2.2. Laboratory studies	17
CHAPTER III	
GEOLOGY AND LITHOSTRATIGRAPHY	
3.1. Allouga locality	20
3.2. Abu Thor locality	22
3.3. Talet Seleim locality	24
CHAPTER IV	
PETROGRAPHY	
4.1. Sandstones	28
4.2. Siltstones	30
4.3. Claystones	32

4.5. Limestones 4.6. Dolostones 4.7. Gypsum CHAPTER V MINERALOGY 5.1- Uranium minerals (i) Uranophane (ii) Autunite 35 47 41 41 43
4.7. Gypsum 39 CHAPTER V MINERALOGY 5.1- Uranium minerals 41 41 41 41 41 41 41 41 41 41 41 41 41
CHAPTER V MINERALOGY 5.1- Uranium minerals 41 41 41 41 41 41 41 41 41 41 41 41 41
MINERALOGY 5.1- Uranium minerals (i) Uranophane 41 41
5.1- Uranium minerals (i) Uranophane 41 41
5.1- Uranium minerals (i) Uranophane 41 41
(i) Uranophane 41
(i) Cranophane
(ii) Autunite
I 40
5.2- Thorium minerals
(i) Thorite
(ii) Uranothorite 5.2 P. Iii d
5.3- Radioelements-pearing minerals
(i) Zircon 45
(ii) Xenotime 48
(iii) Monazite 48
(iv) Allanite 49
(v) Columbite 50
(vi) Apatite 51
5.4- Base metals- bearing minerals 51
(i) Iron minerals 52
(ii) Lead minerals 55
(iii) Nickel minerals 57
(iv) Copper minerals 57
5.5. The hymogenia minerals
(i) Vanatima ziraan assamblaga
(ii) Calaataharita
(iii) Chromogninol
(iv) I and hometic homimorphic assembles
(v) Igracita plumbajancita accomblace
(v) Jarostie-plumbojarostie assembiage 64

CHAPTER VI	
GEOCHEMISTRY	
6.1. The major oxides	67
6.2. The trace elements	74
6.3. Paleoclimatic conditions and diagenesis	
CHAPTER VII	
RADIOELEMENTS DISTRIBUTION	
General statement	90
7.1. Radioactivity	90
7.2. U-mobilization	94
7.3. U-equilibrium	
7.4. Paleo-depositional conditions	99
7.5. Role of rock alteration in the distribution of uranium	102
and associated elements	
SUMMARY AND CONCLUSIONS	104
REFERENCES	108
ARABIC SUMMARY	

LIST OF FIGURES

Figure No.	Title	Page
Fig. (1.1)	Location map of the study area.	2
Fig. (1.2)	Location and geologic maps of Wadi Nasib area showing the studied localities and sampling sites.	3
Fig. (1.3)	Composite lithostratigraphic section and depositional environments of the Paleozoic rocks in southwestern Sinai.	7
Fig. (3.1)	Lithostratigraphic section of Um Bogma Formation in Allouga locality.	21
Fig. (3.2)	Field photograph of Allouga quarry.	21
Fig. (3.3)	Panoramic view showing the geomorphology of Abu Thor locality.	22
Fig. (3.4)	Lithostratigraphic section of Um Bogma Formation in Abu Thor locality.	23
Fig. (3.5)	Field photographs of laterized rocks of Um Bogma Formation in Abu Thor locality.	23
Fig. (3.6)	Field photographs of Talet Seleim locality.	24
Fig. (3.7)	Lithostratigraphic section of Um Bogma Formation in Talet Seleim Locality.	25
Fig. (3.8)	Field photographs of laterized rocks in Talet Seleim locality.	25
Fig. (3.9)	Lithostratigraphic correlation of Um Bogma Formation in the study area.	27
Fig. (4.1)	Photomicrographs (C.N.) of the altered sandstones of Um Bogma Formation in Allouga locality.	29
Fig. (4.2)	Photomicrographs (C.N.) of the altered sandstones of Um Bogma Formation in Talet Seleim locality.	29
Fig. (4.3)	Photomicrographs (C.N.) of the altered siltstones of Um Bogma Formation in Allouga locality.	30

		1
Fig. (4.4)	Photomicrographs (C.N.) of the altered siltstones of Um Bogma Formation in Talet Seleim locality.	31
Fig. (4.5)	Photomicrographs (C.N.) of the altered claystones of Um Bogma Formation in Talet Seleim locality.	32
Fig. (4.6)	Photomicrographs (C.N.) of the altered claystones of Um Bogma Formation in Abu Thor locality.	33
Fig. (4.7)	Photomicrographs (C.N.) of the ironstones of Um Bogma Formation in Allouga locality.	34
Fig. (4.8)	Photomicrographs (C.N) of the ironstones of Um Bogma Formation in Talet Seleim locality.	35
Fig. (4.9)	Photomicrographs (C.N.) of the altered limestones of Um Bogma Formation in Allouga locality.	36
Fig. (4.10)	Photomicrographs (C.N.) of the altered dolomitic limestones of Um Bogma Formation in Abu Thor locality.	37
Fig. (4.11)	Photomicrographs (C.N.) of the altered dolostones of Um Bogma Formation in Allouga locality.	38
Fig. (4.12)	Photomicrographs (C.N.) of the altered dolostones of Um Bogma Formation in Talet Seleim locality.	39
Fig. (4.13)	Photomicrographs (C.N.) of gypsum in Um Bogma Formation in Abu Thor locality.	40
Fig. (4.14)	Photomicrographs (C.N.) of gypsum of Um Bogma Formation in Allouga locality.	40
Fig. (5.1)	BSE images and ESEM spectrographs of uranophane in the Um Bogma altered rocks.	42
Fig. (5.2)	BSE image and ESEM spectrograph of autunite in the Um Bogma altered rocks of Abu Thor locality.	43
Fig. (5.3)	BSE image and ESEM spectrograph of thorite in the Um Bogma altered rocks of Abu Thor locality.	44
Fig. (5.4)	BSE image and ESEM spectrograph of uranothorite in the Um Bogma altered rocks of Abu Thor locality.	45

Fig. (5.5)	Stereophotograph of euhedral and subhedral crystals of zircon.	46
Fig. (5.6)	BSE images and ESEM spectrographs of different forms of zircon in the Um Bogma altered rocks of [(a) Allouga, (b) Abu Thor and (c) Talet Seleim localities].	47
Fig. (5.7)	BSE image and ESEM spectrograph of xenotime in the Um Bogma altered rocks of Abu Thor locality.	48
Fig. (5.8)	BSE images and ESEM spectrographs of monazite in the Um Bogma altered rocks in Allouga locality.	49
Fig. (5.9)	BSE image and ESEM spectrograph of allanite adsorbed on gibbsite and associated with traces of Cu, Ni and Zn (Allouga locality).	50
Fig. (5.10)	BSE image and ESEM spectrograph of columbite in the Um Bogma altered rocks of AbuThor locality.	50
Fig. (5.11)	BSE image and ESEM spectrograph of apatite clusters in the Um Bogma altered rocks of Abu Thor locality.	51
Fig. (5.12)	BSE image and ESEM spectrograph of ilmenite associated with secondary U-minerals in the Um Bogma altered rocks of Allouga locality.	52
Fig. (5.13)	BSE image, stereo –microphotograph of pyrite grains and ESEM spectrograph of pyrite colony in the Um Bogma altered rocks of Allouga locality.	53
Fig. (5.14)	BSE image and ESEM spectrograph of pyrite cubes associated with altered atacamite in the Um Bogma altered rocks of Abu Thor locality.	53
Fig. (5.15)	X-ray diffractogram and stereo- microphotograph of chalcopyrite grains in the Um Bogma altered rocks of Allouga locality.	54