

Hanaa Mohammed

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

Safaa Mahmoud

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Comparative Study on the Effect of Mesenchymal Stem Cells Derived Exosomes Versus Platelets Rich Plasma on Healing of Skin Burn in Albino Rat. A Histological Study

Thesis

Submitted for Partial Fulfillment of Master's Degree in Histology and Cell Biology

Presented by

Mai Mostafa Mohamed Naser

MBBCH

Demonstrator of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Under Supervision of

Prof. Dr. Amany Mohamed Hosney El Shawarby

Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Ass: Prof. Dr. Sara Abdel Gawad El Sebay

Assistant Professor of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Dr. Mohamed Ahmed Abdou Hegazi

Lecturer of Histology and Cell Biology Faculty of Medicine, Ain Shams University

Histology and Cell Biology Department
Faculty of Medicine
Ain Shams University
2022

سورة البقرة الآية: ٣١

First and foremost, thanks to Allah the kindest and the most merciful to whom I relate any success in achieving any work in my life.

I would like to express my sincere thanks and gratitude to **Prof. Dr. Amany Mohamed El Shawarby**, Professor of Histology and cell biology, Faculty of Medicine, Ain Shams University, for her kind supervision, valuable advice, and consistent encouragement and support. It was such a great honor to work under her guidance.

I am particularly very grateful and appreciative to Ass: Prof. Dr. Sara Abdel Gawad El Sebay, Assistant Professor of Histology and cell biology, Faculty of Medicine, Ain Shams University, for her great help, sincere efforts, and continuous encouragement and support throughout the journey, which made the completion of this work much easier. It was a pleasure working under her supervision.

I would further like to thank **Dr. Mohamed Ahmed Abdou Hegazi**, Lecturer of Histology and Cell Biology, Faculty of Medicine, Ain Shams University for her great help and precious instructions throughout this work.

Finally, I would like to express my sincere gratitude, love, respect, and appreciation to all my professors and my colleagues for their continuous support till this work was completed.

Dedication

Words cannot describe my love, thanks, gratefulness, and respect to my parents, my sister my brothers, and my husband for their warm kindness and genuine support. Without their care, patience, encouragement, and support, I would have never achieved any success. To all of them, I dedicate my work.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Diagrams	iv
List of Tables	v
List of Histograms	vi
Abstract	vii
Introduction	1
Aim of the Work	3
Review of Literature	4
Materials and methods	36
Results	58
Discussion	154
Conclusion	167
Recommendations	168
Summary	169
References	
Arabic Summary	

List of Abbreviations

Abb.	Full-term		
ADSCs	Adipose tissue derived stem cells.		
AMPs	Antimicrobial peptides.		
ANOVA	One-way analysis of variance.		
DAB	Diaminobenzidine tetrahydrochloride.		
DEPA	Dose, efficiency, purity, activation process of		
	the PRP.		
DMEM	Dulbecco's modified Eagles medium.		
DNA	Deoxyribonucleic acid.		
ECM	Extracellular matrix.		
EGF	Epidermal growth factor.		
EMT	Epithelium mesenchymal transition.		
EPC	Endothelial progenitor cells.		
FBS	Fetal bovine serum.		
FGF-2	Fibroblast growth factor-2.		
FGF-9	Fibroblast growth factor-9.		
GFs	Growth factors.		
H&E	Haematoxylin and eosin.		
H2O2	Hydrogen Peroxide.		
HPF	High power field.		
HRP	Horse-radish peroxidase.		

List of Abbreviations (Cont.)

Abb.	Full-term
IFN-γ	Interferon-γ.
IGF-1	Insulin-like growth factor-1.
IL-1β	Interleukin-1β.
IL-6	.Interleukin-6.
IP	.Intraperitoneal.
LP-PRF	.Leukocyte-poor platelet-rich fibrin.
LP-PRP	.Leukocyte-poor PRP.
LR-PRF	.Leukocytes-rich platelet rich fibrin.
LR-PRP	Leukocyte-rich PRP.
LSD	least significance difference.
MASRI	Medical Ain Shams Research Center.
mRNA	Messenger Ribonucleic acid.
MSCs	.Mesenchymal stem cells.
MVEs	Multivesicular endosomes.
NF-kB	Nuclear factor kappa B.
PAP	Platelet average plasma.
PBS	Phosphate buffer saline.
PCNA	.Proliferating cell nuclear antigen.
PDGF	platelets derived growth factor.
PPP	Platelet poor plasma.

List of Abbreviations (Cont.)

Abb.	Full-term
PRF	Platelet-rich fibrin.
PRP	Platelet-rich plasma.
RCMB	Regional Center for Mycology and
	Biotechnology.
ROS	Reactive oxygen species.
rpm	Round per minute.
SD	Standard deviation.
SKP	Skin derived precursor.
SPSS	Statistical Package for the Social Sciences.
TBI	Traumatic brain injury.
TEM	Transmission electron microscopy.
TGFα	Transforming growth factor-α.
TGF-β	Transforming growth factor-beta.
TNF-α	Tumor necrosis factor-α.
UV	Ultraviolet.
VEGF	Vascular endothelial growth factor.
γ-δ	Gamma delta.

List of Diagrams

Diagram. No	. Title	Page No.
Diagrams in	Review:	
Diagram (1):	Showing the keratinocytes differe	ntiation7
Diagram (2):	Showing different stem cell	niche in
	human skin	12
Diagram (3):	showing hair follicle stem cell nic	he13
Diagram (4):	Showing the components of hair	r follicle
	stem cell niche	14
Diagram (5):	Showing the hair follicle stem cel	l and hair
	cycle	16
Diagram (6):	Showing the pathway for	exosome
	formation and release	25
Diagram (7):	Showing targeting of exosomes a	and micro
	vesicles to recipient cells	27

List of Tables

Table No.	Title	Page No.
Table (1):	Showing the mean epidermal thickr in different subgroups	•
Table (2):	Showing the mean number of PCNA nuclei in the epidermis in	different
	subgroups.	142
Table (3):	Showing the mean area percentage collagen fibers in different subgroup	
Table (4):	Showing the mean area percentage +ve cells in the dermis in	different
	subgroups	140
Table (5):	Showing the mean number of hair for the dermis in different subgroups	
Table (6):	Showing the mean thickness of muscle layer (µm) in different subgr	
Table (7):	Scoring system for histopathologica in burn wound healing in different st	C

List of Histograms

Histo. No.		Title		Page No.	
Histogram (1)): Showing	the mea	n epider	mal thickn	iess
	(µm) in dif	fferent sub	groups .		141
Histogram (2):Showing	the mea	n numb	er of PC	NA
	positive nu	iclei in the	e epidern	nis in diffei	ent
	subgroups				143
Histogram (3)	: Showing t	the mean	area pero	centage (%)) of
	collagen fi	bers in di	fferent su	ıbgroups	145
Histogram (4)	: Showing	the mean	n area	percentage	of
	CD34 +ve	cells in	the derm	nis in differ	ent
	subgroups				147
Histogram (5)	: Showing t	he mean r	number o	of hair follio	cles
	in the dern	nis in diffe	erent sub	groups	149
Histogram (6)	: Showing	the mean	ı thickne	ess of skel	etal
	muscle lay	er(µm)in	different	subgroups	151
Histogram (7)	:Showing	scoring	system	for his	sto-
	pathologic	al chang	ges in	burn wo	und
	healing in	different	subgroup	os	153

ABSTRACT

Background:

Burn injury is considered one of the major causes of trauma to the human body that may lead to death and disability. Secondary infections, long healing periods, and healing with scars still appear as the main difficulties in burn wound management. Therefore, new strategies are needed to promote and help in wound healing and repair.

Recent studies have demonstrated that exosomes help tissue repair because of high stability, non-immune rejection and easy control of dosage and concentration.

Platelet-rich plasma (PRP) is an autologous concentration of platelets in concentrated plasma. It has been used to promote soft and hard tissue healing.

<u>Aim of the work:</u> to compare the effect of Mesenchymal stem cells (MSCs) derived exosomes versus platelets rich plasma (PRP) on the promotion of healing of experimentally induced second degree partial thickness burn injury in adult male albino rats.

Materials and methods:

The thirty-two adult male albino rats were divided randomly into 4 groups. **Group I** (control). **Group II** (burn injury group) that will be left for spontaneous healing. **Group III** (burn injury treated with PRP intradermal injection). **Group IV** (burn injury treated with intradermal MSCs derived exosome). All the animals were sacrificed at 7th day (subgroup a) and 21th day (subgroup b). The skin biopsies were obtained and processed for histological and immunohistochemical studies. Morphometrical & statistical analysis was also done.

Results:

H&E stained section of untreated burn (**subgroup IIa**) showed coagulative necrosis of the epidermis and papillary layer of the dermis. Sign of epithelial migration from the edge of the wound appeared. Significant decrease in both area percentage of collagen fibers and CD34 positive cells was detected in the dermis compared to all other subgroups. In **Subgroup IIb** the surface of the wound was covered by an eschar that converted partial thickness burn into complete thickness burn. Absence of epidermis occurred with significant decrease in area percentage of collagen fibers in the dermis. The dermis also showed apparent increase in the inflammatory cells together with significant increase in CD34 positive cells. In **PRP treated group**, the epidermis revealed incomplete differentiation with significant decrease in the epidermal thickness

compared to exosomes treated group. After 1 week PCNA positive cells showed significant decrease While, area percentage of collagen fibers and CD34 positive cells showed significant increase compared to exosomes treated subgroup. After 3 weeks, PRP treated subgroup showed significant increase in PCNA positive cells compared to exosomes treated subgroup. However, the area percentage of collagen fibers and CD34 positive cells were similar to control group. One-week exosomes treated subgroup revealed well differentiated epidermis with significant increase in the epidermal thickness and PCNA positive cells compared to PRP treated subgroup. However, there was significant decrease in the area percentage of collagen fibers and CD34 positive cells compared to PRP treated subgroup. Three weeks exosomes treated subgroup showed statistical results similar to control group.

Conclusion:

The current study revealed that burn treated exosomes group was better than PRP treated group. In addition, PRP treated group revealed hyperplastic changes in epidermis with abnormal remodeling phase of burn healing in 20% of specimens.

<u>Keywords:</u> partial thickness skin burn, MSCs derived exosomes, PRP, male albino rat.