

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

The Accuracy of Neutrophil/Lymphocyte Ratio in Prediction of Preeclampsia in Low Risk Population Thesis

Submitted For Partial Fulfillment of Master Degree in Obstetrics & Gynaecology

By

Shaza Mohamed Ahmed Elreweny

M.B.B.CH Faculty of Medicine Alexandria University 2013

Supervised by

Prof. Dr. Ahmed Khairy Maglad

Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. Mohamed Samir Eid Sweed

Assistant Professor of Obstetrics and Gynecology Faculty of Medicine Ain Shams University

Dr. Osama Ismail Kamel

Lecturer in Obstetrics and Gynecology Faculty of Medicine Ain Shams University

> Faculty of Medicine Ain Shams University 2020

First and foremost, Thanks to **Allah**, to whom I relate any success in achieving any work in my life.

I would like to express my deep gratitude and sincere appreciation to **Prof. Dr. Ahmed Khairy Maqlad,** Professor of Obstetrics and Gynecology, Ain Shams University for his sustained support, continued encouragement and for his precious time and effort that made this thesis possible. It was great honor to me to do this thesis under his supervision.

I owe special feeling of gratitude to **Dr. Mohamed Samir Eid Sweed**, Assistant Professor of Obstetrics and Gynecology, Ain Shams University for his great help, close supervision, wise opinions, guidance and his continuous encouragement and for his precious effort. Without his support, this work would not have been completed.

My deep appreciation to **Dr. Osama Ismail Kamel,** Lecturer in Obstetrics and Gynecology, Ain Shams University for his valuable instructions, unlimited help and great deal of support, his endless patience with me and for his experienced guidance and helpful suggestions that make the completion of this work possible.

A special word of thanks goes to my supportive **family** without their help this work wouldn't come to light.

Contents

Subject	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Study	5
Chapter (1): Hypertensive Disorders of Pregnancy	6
Chapter (2): Diagnostic Criteria for Preeclampsia	10
Chapter (3): Risk Factors of Preeclampsia	13
Chapter (4): Complications of Preeclampsia	18
Chapter (5): Pathophysiology of Preeclampsia	20
Chapter (6): The Physiological Response of Innate	
Immune System to the Systemic Inflammation	50
Patients ane Methods	58
Results	64
Discussion	86
Summary	93
Conclusion	102
Recommendations	103
References	104
Arabic Summary	١١

List of Abbreviations

Abb.	Full term
ACOG	American College of Obstetricians and
	Gynecologists
ALT	Alanine transaminase
AST	Aspartate aminotransferase
BMI	Body mass index
CBC	Complete blood counts
СЕМАСН	Confidential Enquiry into Maternal and Child
	Health in UK
CRP	C-reactive protein
DBP	Diastolic blood pressure
EDTA	ethylenediaminetetraacetate
eNOS	Endothelial nitric oxide synthase
HELLP	Hemolysis, Elevated Liver enzymes and Low
	Platelets
IL-8	Interleukin-8
ILT	Immunoglobulin-like transcript receptor
IUGR	Intrauterine growth restriction
mg	Milligram
mg/dL	Milligram per deciliter
mm Hg	Millimeter of mercury
mm ³	Millimeter of mercury
NK	Natural killer

List of Abbreviations

Abb.	Full term
NLR	Neutrophil lymphocyte ratio
N/Th1	Neutrophil helper T1 lymphocyte ratio
N/Th2	Neutrophil helper T2 lymphocyte ratio
PE	Preeclampsia
PET	Preeclampsia toxemia
PGF	Placental growth factor
PLR	Platelet lymphocyte ratio
Pr/Cr	Protein creatinine ratio
P/Th1	Platelet helper T1 lymphocyte ratio
P/Th2	Platelet helper T2 lymphocyte ratio
ROC	Receiver Operating Characteristic
SBP	Systolic blood pressure
sEng	Soluble endoglin
sFlt-1	Soluble fms-like tyrosine kinase 1
SLE	Systemic lupus erythematous
SNPs	Single-nucleotide polymorphisms
TNF-α	Tumor necrosis factor-α

List of Tables

No	Table	Page
1	Diagnostic criteria for preeclampsia	10
2	Risk factors of preeclampsia	13
3	Components of the Inflammatory or Innate Immune System	44
4	The Systemic Inflammatory Response in Normal Pregnancy and Preeclampsia	46
5	Age distribution	64
6	Obstetric history	65
7	Clinical examination	67
8	Lab investigations	68
9	Difference between N/L ratio before and after labor	71
10	Age distribution	72
11	Obstetric history	73
12	Clinical examination	76
13	Lab investigations	78

List of Figures

No	Figure	Page
1	Stereographic representation of myometrial and endometrial arteries	22
2	Diagram of anchoring villi (AV) at the maternal-fetal interface in normal and preeclamptic pregnancy	23
3	Abnormal placentation in preeclampsia	24
4	Interaction between extravillous trophoblast and natural killer cells	29
5	Pathogenesis of systemic endothelial dysfunction	40
6	Progression of pregnancy to preeclampsia	48
7	Role of CRP in arterial hypertension	57
8	Comparison between cases and controls regarding N/L ratio before labor	81
9	Comparison between cases and controls regarding N/L ratio after labor	82
10	Diagnostic accuracy of N/L ratio before labor for diagnosis of preeclampsia	83
11	Predictive ability of N/L ratio for prediction of preeclampsia	85

Introduction

Hypertensive disorders are the most common medical problem encountered in pregnancy, affecting up to 15% of pregnancies and accounting for approximately 25% of antenatal admissions. They are classified into four categories: Preeclampsia-Eclampsia, chronic hypertension, chronic hypertension with superimposed preeclampsia and gestational hypertension (**Butalia et al., 2018; ACOG, 2013**).

preeclampsia (PET) is a major cause of maternal and fetal or neonatal mortality and morbidity (**Sibai et al., 2005**). This disorder complicates 5%-7% of all pregnancies (Wagner, 2004).

Preeclampsia is defined as a new onset of hypertension associated with proteinuria and fluid retention detected for the first time after the 20th week of gestation (Salam et al., 2015).

Clinical symptoms are hypertension ≥140/90 mm Hg and proteinuria ≥ 0.30 g/d. Severe conditions are often associated with intrauterine growth restriction (IUGR), acute renal failure, HELLP syndrome (Hemolysis, Elevated Liver enzymes and Low Platelets) or other systemic manifestatios (Cornelius and Wallace, 2019). It is

associated with high risks of preterm delivery, intrauterine growth restriction, placental abruption, renal failure, subcapsular hepatic hematoma and perinatal mortality, along with maternal morbidity and mortality (ACOG, 2013; McClure et al., 2011). The pathophysiology of PET is not clear, there are many theories highlighting its multifactorial basis. It may be related to both placental and maternal abnormal placentation, factors including systemic dysfunction or cell activation, endothelial and angiogenic imbalance favoring anti-angiogenic factors (Fisher, 2015).

Preeclampsia is associated with a more maternal systemic inflammation than occurs in normal gestation. The features of PET arise from the sum of the circulatory disturbances caused by systemic maternal endothelial cell dysfunction or activation. so leukocytes activates endothelium and vice versa (Mihu et al., 2015; Tannetta et al., 2017).

Hence, all the markers of inflammation that already are changed in normal pregnancy are affected more severely in PET. The inflammatory changes may progress to the point of decompensation, which can account for the different crisis of the condition such as eclampsia, HELLP syndrome and so on (**Cintesun et al., 2018**).

Although the exact etiology has not been clearly defined, studies have shown that leukocyte activation plays a significant role during the disease process in PET. Significant findings of leukocyte activation have been made, including increased superoxide generation and enhanced integrin CD11b and CD64 expressions in monocytes and in neutrophils in women with PET (Cintesun et al., 2018).

Activated leukocytes also release a variety of substances such as cytokine interleukin-8 (IL-8) and tumor necrosis factor-α (TNF-α), which are capable of mediating endothelial function. Interactions between activated leukocytes, platelets, and vascular endothelium are believed to contribute to the vascular injury in this pregnancy disorder. Furthermore; neutrophil activation is believed to be a major component of exaggerated inflammatory responses in the maternal vascular system during PET (Kurtoglu et al., 2015; Yıldız et al., 2016).

Clearly, cytokines such as interleukin-6 (IL-6) and tumor necrosis factor- α (TNF- α) are elevated in PET (**LaMarca et al., 2016**). These cytokines support the expression of the acute-phase protein C-reactive protein (CRP). CRP is produced in the liver and has been found in amniotic fluid (**Parchim et al., 2015**).