Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

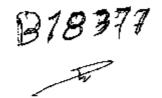
جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl



بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

Zoology Department Faculty of Science Ain Shams University

Effect of industrial and organic pollution on potential productivity and fish stock of Lake Mariut, Northern Egypt with a predictive study of that effect on the Lake.

BY Abeer Abdul Rahman Koussa

A THESIS

Submitted in Partial Fulfillment for the Award of the Degree of Doctor of Philosophy of Science (Aquatic Ecology)

SUPERVISORS

Prof. Dr. Nawal N. Nashed Professor of Protozoa Zoology Dept., Fac. of Science, Ain Shams University.

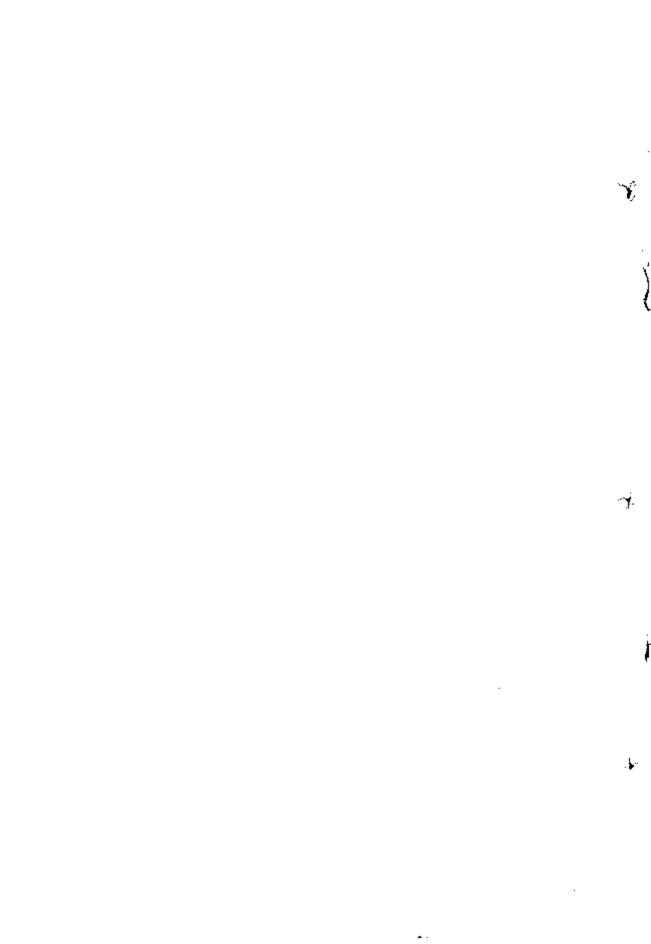
Men.

Prof. Dr. Magdy T. Khalil Professor of Aquatic Ecology Zoology Dept., Fac. of Science, Ain Shams University.

Dr. Waheed M. Emam Assist.Prof. of marine Ecology Zoology Dept., Fac. of Science, Ain Shams University.

Victory Eman

2000


718 713

CONTENTS

r	age
ACKNOWLEDGMENT	I
ABSTRACT	11
LIST OF TABLES	III
LIST OF FIGURES	lV
INTRODUCTION	1
REVIEW	3
MATERIAL & METHODS	14
Description of the Lake	14
-Historical	14
-Morphometry	15
-Hydrology and water economy	17
	17
-Sampling sites Physico-chemical parameters	18
-	18
-Water temperature	18
-Hydrogen ion concentrations (pH)	
-Chlorosity	18
-Alkalinity	19
-Hydrogen sulfide	19
-Dissolved oxygen	19
-Biochemical oxygen demand	19
-Dissolved ammonia	20
-Nitrate & Nitrite	20
-Phosphate	.20
Biological studies	20
-Phytoplankton	20
-Zooplankton	21

-BenthosFishes & fishery biology	21 22
-Biological quality parameters	- 42
RESULTS & DISCUSSION:	. 24
RESULTS & DISCUSSION	26
- Physico-chemical parameters	. 26
- water temperature	37
-rivdrogen ion concentrations (nH)	
-cmorosity	20
-bissolved oxygen	2.4
-Alkaning	20
-Dissolved ammonia	36
-Nitrate	
-Nutrite	40
-Priosphate	42
-Hydrogen sulfide	44
-Biochemical oxygen demand	46
Phytoplankton Species communication	47
-Species composition and diversity	50
-Density	50
-Autecological analysis	56
-Predicting models	62
Zooplankton	66
-Species composition	69
-Diversity and density	69
-Seasonal fluctuations in different stations	77
-Predicting models	79
	106
	11
-Distribution of zoobenthos	11
-Spanal and seasonal fluctuations	17
-Historical records of zoobenthos	30
	.70

-Predicting relationships	
Fish & Fishery biology	134
-Fish production	134
-Species composition	135
-Fishery biology •Length-weight relationship	136 136
Condition factor	145
-Age and growth parameters	146
•Mortality coefficients and exploitation rate	150
Size at recruitment and mean selection length	. 152
•Theoritical growth in length	. 155
•Theoritical growth in weight	159
Predicting models	. 163
CONCLUSION AND SUGGESTIONS	167
SUMMARY	171
REFERENCES	182
	196
ARABIC SUMMARY	170

ACKNOWLEDGEMENT

Fin greatly indebted to *Professor Dr. Nawal N. Nashed.*, *Professor Dr. Magdy T. Khalil and Dr. Waheed M. Emam*, Zoology Department, Faculty of Science, Ain Shams University, for their direct supervision, continuous guidance, helpful suggestions concerning the plan of work and instructive tuition throughout the whole work.

My deep thanks are also due to *Dr. Ahmed A. El- Awamri and Dr. Adel F. Hamed*, Botany Department, Faculty of Science, Ain Shams University for their supervision the work of phytoplankton, and their execution till being presented into the present thesis.

I would like to thank also *Professor*. Dr. Waheeh Labib, Institute of Oceanography and Fisheries, for his helpful assistance in scale-readings of the fishes.

÷

::≰.

Thanks are also extended to Mr. Nazeh B. Azer, Ex-Manager of the Research Lab in the General Authority of Fish Resources and Development and other members of the Lab who helped me in collection of samples from Lake Mariut, and analyses of some chemical parameters.

Finally, a word of gratitude is due to the Department of Zoology, Faculty of Science, Ain Shams University, for providing the research facilities needed to achieve this work.

一大大大大

ABSTRACT

An ecological study was conducted in the Main Basin of Lake Mariut, during the period from May 1998- May 1999, to evaluate the present situation and investigate the pollution levels in the basin after operating the primary treatment plants in July 1993, as well as to assess the impact of this significant change in quality of drainage effluents on flora, fauna and fisheries of the Lake.

The results revealed that the quality of the drainage effluent discharging into Lake Mariut has been noticeably improved where the BOD level, which is an indicative parameter to the organic load, has been reduced by about 50% of the original concentration in the ETP and WTP effluents. However, BOD levels are still high enough to affect the environment of the northern part of the Main Basin, exhibiting elevated levels of wastewater-associated analytes such as ammonia, hydrogen sulphide, oxygen demand, and phosphorus.

ŧ٦

4,

The organo-tolerant blue-green algae have dominated the community composition of phytoplankton. Zooplankton community was dominated by the rotifer *Brachionus* genus, which is known as a pollution-tolerant. The benthic community was most depressed due to the very reactive sludge layer on the bottom of the Main Basin, which is unsuitable for most benthic organisms. Fishery was stressed by wastewater impacts, and under existing conditions approximately 40-60% of the Main Basin does not support a viable fishery. High-valued fish have disappeared and the organo-tolerant tilapian species are the dominant fish now besides the catfish *Clarias gariepinus*.

Some recommendations and suggestions were proposed at the end of this study to restore and revive this vital, important ecosystem; Lake Mariut.

		~i,
		4

LIST OF TABLES

Table (1): Water quality characteristics of the Main Basin of Lake Mariut at stn.I, during 1998/1999.	27
Table (2): Water quality characteristics of the Main Basin of Lake Mariut at stn. II, during 1998/1999.	27
Table (3): Water quality characteristics of the Main Basin of Lake Mariut at stn. III, during 1998/1999.	28
Table (4): Water quality characteristics of the Main Basin of Lake Mariut at stn. IV during 1998/1999.	2 8
Table (5): Water quality characteristics of the Main Basin of Lake Mariut at stn. V during 1998/1999.	29
Table (6): Water quality characteristics of the Main Basin of Lake Mariut during 1998/1999 (average months	
for each station).	30
Table (7): Water quality characteristics of the Main Basin of Lake Mariut during four different periods.	32
Table (8): Standing crop of phytoplankton (units/1) and their ecological status on the Main Basin of Lake Mariut during 1998-1999 (average months for each station).	52
Table (9): Diversity indices of algae communities at the different stations of the Main Basin of Lake Mariut during 1998/1999.	56
Table (10): Seasonal fluctuation of phytoplankton density (units/l) in the different stations of the Main Basin of Lake Mariut during 1998/1999.	61
Table (11): List of zooplankton taxa and species recorded from Lake.	70
Table (12): Species composition and annual average densities (indiv./m³) of zooplankton of Lake Mariut	
_during 1998/1999.	74

Table(13): Species composition and abundance (indiv./m ³) of zooplankton of Lake Mariut during 1998/1999 for station].	
Table (14): Species composition and abundance (indiv./m³)of zooplankton of Lake Mariut during 1998/1999 for station II.	80
Table (15): Species composition and abundance (indiv./m³)of zooplankton of Lake Mariut during 1998/1999 for station III.	91
Table (16): Species composition and abundance (indiv./m³)of zooplankton of Lake Mariut during 1998/1999 for station IV.	97
Table (17): Species composition and abundance (indiv./m³) of zooplankton of Lake Mariut during 1998/1999 for station V.	102
Table (18): List of zoobenthic species recorded from Lake Mariut.	113
Table(19): Species composition and abundance (indiv./m²) of benthic macrofauna in the Main Basin of Lake Mariut during 1998/1999.	114
Table(20): Species composition and abundance (indiv./m ²) of benthic macrofauna of Lake Mariut in station I during 1998/1999.	
Table(21): Species composition and abundance (indiv./m ²) of benthic macrofauna of Lake Mariut in station II during 1998/1999.	116
Table(22): Species composition and abundance (indiv./m²) of benthic macrofauna of Lake Mariut in station III during 1998/1999.	
Table(23): Species composition and abundance (indiv./m²) of benthic macrofauna of Lake Mariut in	122
station IV during 1998/1999.	125

Ċ

.