Salwa Akl

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Call +600-2

Salwa Akl

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Salwa Akl

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

Institute of Graduate Studies and Research
Alexandria University

Alterations in the Activity of Some Carcinogen-Metabolizing Enzymes After Treatment with Various N-nitroso compounds

318378

A Thesis Submitted in Partial Fulfillment for Master Degree in Bioscience & Technology

Presented by

Sherine shawky Salem Moustafa Fayad

(B.Sc. in Biochemistry / Chemistry)
Alexandria University

Department of Bioscience & Technology,
Institute of Graduate Studies & Research
Alexandria University

Supervisors

Prof. Mohamed Salah El-Dein Hassouna

Professor of Microbiology, Department of Environmental Studies, Institute of Graduate Studies & Research, Alexandria University.

Dr. Salah Ahmed Sheweita

Lecturer of Biochemistry, Department of Bioscience & Technology, Institute of Graduate Studies & Research, Alexandria University.

Alteration in the Activity of some Carcinogen-Metabolizing Enzymes AfterTreatment with Various N-nitroso compounds.

APROVED

A. Soffiar

Showed Should

Salah Hassorne

Date²⁸ / / / / 1999 Alexandria, Egypt.

To The Soul of my Mother

Acknowledgement

Acknowledgments

I would like to thank Professor Mohamed Salah El-Dein Hassouna, Professor of Microbiology, Department of Environmental Studies, Alexandria University, Egypt, For providing the perfect environment in my quest for Knowledge. Under his supervision, I found that it could be fun to work and learn at the same time. It is impossible for me to express the gratitude I feel, for his guidance, support, knowledge and enthusiasm.

I am grateful to many people who helped me achieve the completion of this work. I want to think Dr. Salah Ahmed Sheweita, Lecturer of Biochemistry, Department of Bioscience & Technology, Alexandria University, for his continual support of my efforts during the good times and the more difficult ones. He was the ideal mentor, the P.I. that graduate students dream of having. He encouraged me to work independently, which gave me the opportunity to make my own mistakes. From this mistakes. I have learned, and as a result I am a better scientist.

I would like to thank Mr. Mohammed Salem and Mrs. Nema
Mahmoud and Mrs. Suzanne El-Sayed and all nice people for their
helping during the experimental work.

1. Introduction and Aim of the work	Page
2. Review of Literature	. 2
2.1 Mixed-Function oxidase System	2
2.2 Catalytic cycle of cytochrome P450	.!
2.3 Role of mixed function exidase system in the metabelism of veno	biotics . 8
2.3.1 Metabolism of endogenous substrates	. 9
2.3.2 Metabolic activation of chemical carcinogens	. 10
2.3.2.1 Polycyclic aromatic hydrocarbons	10
2.3.1.2. Polyhalogenated biphenyls	13
2.3.1.3 Aromatic Amines and amides	15
2.3.1.4 Azo Compounds	16
2.3.1.5 Aflatoxin B1	16
2.3.1.5.1 Metabolism and Mechanism of a	Action of
aflatoxin B ₁	20
2.3.1.6 Nitrosamines	23
2.4 Mechanism of Enzyme Induction, the ah locus	24
2.4.1 The Ah Receptor	26
2:5 Factors modulating the activity of drug- metabolizing enzym	nes 26
2.5.1 Tissues	26
2,5.1.1 Lung	. 27
2 5.1.2 Kidney	28
2.5.2 Immunological aspects	28
2.5.3 Extent of induction	29
2.5.3.1 Strain differences	29

2.5.3.2 Age	30
2.5.3.3 Nutrition	30
3. MATERIALS AND METHODS	33
3.1 Materials	33
3.1.1 The Experimental Animals	33
3.1.2 Chemicals	.33
3.2.1 Administration schedules of N-nitroso compounds	33
3.2.2 Preparation of the microsomal fraction	34
3.2.3 Assay of DMN-demethylase I activity	34
3.2.4 Estimation of formaldehyde	35
3.2.5 Assay of aryl hydrocarbon hydroxylase activity	35
3.2.6 Estimation of hepatic cytochrome P-450 content	. 37
3.2.7 Estimation of cytochrome b-5:	37
3 2 8 Assay of NADPH-Cytochrome-C reductase activity	39
3.2.9 Determination of the hepatic content of glutathione	. 39
3.2.10 Assay of glutathione-S-transferase activity	39
3.2.11 Estimation of free radicals	41
3.2.12 Estimation of protein	42
3.2.13 Statistical analysis	.1
4. Results and Discussion	. 45
5. English Summary	128
6. Reference	132
7. Arabic Summary	1.

List of Tables

Number of table

Page

i.	Effect of dibutylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of microsoma protein
2.	Effect of ethylbutylnitrosamine after single (4h) and repeated doses (three consecutive days) treatments on the hepatic content o microsomal protein
3.	Effect of propylbutylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of microsomal protein
	Effect of methylpropylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content o microsomal protein.
5 .	Effect of ethylmethylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of microsomal protein.
6.	Effect of diphenylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of microsomal protein.
7.	Effect of dibutyluitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome P-450in the mice liver
8.	Effect of ethylbutylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome P-450in the mice liver

1;

9. Effect of propylbutylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome P-450in the mice liver
10. Effect of methylpropylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome P-450 in the mice liver
11. Effect of ethylmethylmitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome P-450 in the mice liver
12. Effect of diphenylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the hepatic content of cytochrome P-450 in the mice liver
13. Effect of dibutylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the activity of aryl hydrocarbo hydroxylase of the mice liver
14. Effect of ethylbutylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the activity of aryl hydrocarbo hydroxylase of the mice liver
15. Effect of propylbutylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the activity of ary hydrocarbon hydroxylase of the mice liver
16. Effect of methylpropylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the activity of ary hydrocarbon hydroxylase of the mice liver
17 Effect of ethylmethylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the activity of any hydrocarbon hydroxylase of the mice liver
18. Effect of diphenylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the activity of aryl hydrocarbo hydroxylase of the mice liver

19. Effect of dibutylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the hepatic content of cytochrome b ₅ of the mice liver
20. Effect of ethylbutylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the hepatic content of cytochrome b ₅ of the mice liver
21. Effect of propylbutylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome b ₅ of the mice liver
22. Effect of methylpropylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome b ₅ of the mice liver
23. Effect of ethylmethylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the hepatic content of cytochrome b ₅ of the mice liver
24. Effect of diphenylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the hepatic content of cytochrome b ₅ of the mice liver
25. Effect of dibutylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the activity of NADPI cytochrome C reductase of the mice liver
26. Effect of ethylbutylnitrosamine after single (1h) and repeated dose (three consecutive days) treatments on the activity of NADPI cytochrome C reductase of the mice liver
27. Effect of propylbutylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the activity of NADPs cytochrome C reductase of the mice liver
28. Effect of methylpropylnitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the activity of NADPI cytochrome C reductase of the mice liver
29. Effect of ethylmethylmitrosamine after single (1h) and repeated doses (three consecutive days) treatments on the activity of NADPI cytochrome C reductase of the mice liver