

Evaluation of the efficacy of Polydioxanone threads versus autologous plasma gel for infraorbital rejuvenation

Thesis

Submitted for Partial Fulfillment of Master Degree in Dermatology, Venereology and Andrology

Presented By

Wassan Mohammed Jwad Zayed

M.B. B.Ch. Basrah University-Iraq

Under supervision

Prof. Dr. Heba Mahmoud El-Sayed Diab

Professor of Dermatology, Venereology and Andrology Faculty of Medicine – Ain Shams University

Dr. Samah Ibrahim Hassen

Lecturer of Dermatology, Venereology and Andrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2020

سورة البقرة الآية: ٣٢

Acknowledgment

First of all, thanks GOD, the merciful, the beneficent for helping me during this work.

I would like to express my indebtedness and deepest gratitude to **Prof. Dr. Heba Mahmoud El-Sayed Diab**, Professor of Dermatology, Venereology and Andrology, Faculty of Medicine, *Ain Shams* University for her valuable advice, guidance and constructive criticism, also for the invaluable assistance and efforts she devoted in the supervision of this study.

I would like also, to express my great thanks to **Dr. Samah Ibrahim Hassen**, Lecturer of Dermatology, Venereology and Andrology, and Faculty of Medicine – *Ain Shams* University. Her valuable advises and continuous support facilitated completing this work.

I would like to thank all the staff members of the Dermatology, Venereology and Andrology department.

List of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iv
Introduction	1
Aim of the Work	4
Review of Literature	
Infraorbital Region Anatomy, Pathogenesis Circle & Skin Aging	
Infraorbital Rejuvenation Modalities	28
Polydioxanone Threads	35
Plasma gel	45
Patients and Methods	54
Results	63
Discussion	115
Conclusion	121
Recommendations	122
Summary	123
References	124
Arabic Summary	

List of Abbreviations

Abb.	Full term
ANOVA	Analysis of variance
	Dark eye circle
	Dermal-epidermal junction
	Deoxyribonucleic acid
	Extracellular matrix
EGF	Epidermal growth factor
	Food and Drug Administration
	Fibroblast growth factor
GAGs	Glycosaminoglycans
HIV	Human immunodeficiency virus
IGF-1	Insulin-like growth factor-1
IOA	Infraorbital artery
IOF	Infraorbital foramen
ION	Infraorbital nerve
	Matrix metalloproteinase
PCA	Poly-caprolactone
PDGF.	Platelet-derived growth factor
PDO	Polydioxanone
	Poly-L-lactic acid
	Periorbital hyperpigmentation
PPP	Platelet poor plasma
PRFM	Platelet- rich fibrin matrix
PRP	Platelet rich plasma
	Reactive oxygen species
	Rotations per minute
	Standard deviation
	Trichloroacetic acid
-	Transforming growth factor-beta
	Tear trough rating scale
VEGF	Vascular endothelial growth factor

List of Tables

Table No.	Title	Page No.
Table (1):	Glogau Photoaging Classification - Scale	
Table (2):	Platelet factors	
Table (3):	Demographic data of included paties	
Table (4):	Grading of infraorbital dark according to Allergan scale	circles
Table (5):	Blinded doctor assessment of presponse at the right eye	
Table (6):	Blinded doctor assessment of presponse at the left eye.	
Table (7):	Comparison of indentation index relipatients' gender	
Table (8):	Comparison of indentation index relipatients' skin phototype	
Table (9):	Comparison of indentation index relapatients' smoking status	lation to 71
Table (10):	Comparison of indentation index relapatients' sun exposure	
Table (11):	Comparison of indentation index relapatients' use of cosmetics	
Table (12):	Side effects encountered in i	
Table (13):	Assessment of treatment response is sized wrinkles with PDO threads	
Table (14):	Assessment of treatment response is sized wrinkles with plasma gel	
Table (15):	Assessment of treatment responded lesized wrinkles with PDO thr	

List of Tables Cont...

Table No.	Title	Page No.
Table (16):	Assessment of treatment middle-sized wrinkles with plas	-
Table (17):	Assessment of treatment responsive with both PDO plasma gel.	threads and
Table (18):	Assessment of treatment medium-sized wrinkles with threads and plasma gel	both PDO
Table (19):	Correlation of indentation ind sized wrinkles with PDO the demographic data of included p	hreads with
Table (20):	Correlation of indentation ind sized wrinkles with plasma demographic data of included p	a gel with
Table (21):	Correlation of indentation medium-sized wrinkles with I with demographic data of include	PDO threads
Table (22):	Patients' satisfaction with both	treatment90

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Anatomical definition of the tear to	ough7
Figure (2):	Periorbital fat pads	9
Figure (3):	Structural differences between skin and aged skin	
Figure (4):	Histological Comparison between skin	
Figure (5):	Infraorbital dark circles due to e pigmentation	
Figure (6):	Infraorbital dark circle due inflammatory hyperpigm secondary to atopic dermatitis	entation
Figure (7):	(A) Dark circles with thin and infraorbital skin (B) one da intradermal long-chain polynfiller injection	y after ucleotide
Figure (8):	Infraorbital dark circles cau shadowing due to skin laxity	_
Figure (9):	Infraorbital dark circles cau shadowing due to skin laxity a trough	and tear
Figure (10):	Flow chart of the systemic analysis	s of DEC 27
Figure (11):	Mechanism of action	36
Figure (12):	The different parts of polyd	
Figure (13):	Types of polydioxanone thread	39
Figure (14):	The method of thread insertion tho	•
Figure (15):	Schematic diagram of change after thread insertion	

List of Figures Cont...

Fig. No.	Title	Page No.
Figure (16):	Changes after inserting a mono-th	read43
Figure (17):	Mechanism of action and signaling	
	for growth factors and cytokines is	-
	gel	47
Figure (18):	Antera 3D camera, (Miravex, Irela	nd)56
Figure (19):	Insertion of monothread in infraor	bital57
Figure (20):	The revised Allergan Infra Orbital S	Scale 59
Figure (21):	Gender, skin phototype and status distribution	_
Figure (22):	Sun exposure and use of sunbl cosmetics.	
Figure (23):	Side effects encountered in patients	
Figure (24):	Right eye antera reports	93
Figure (25):	Left eye antera reports	96
Figure (26):	Right eye antera reports	99
Figure (27):	Left eye antera reports	102
Figure (28):	Right eye antera reports	105
Figure (29):	Left eye antera reports	108
Figure (30):	Right eye antera reports	111
Figure (31):	Left eye antera reports	114

Introduction

Infraorbital dark circle refers to the darkness of infraorbital Larea below the lower eyelids. It is a significant cosmetic problem, and many individuals try to find a treatment for this condition (Mehryan et al., 2014)

Actually, infraorbital dark circle is a complex facial cosmetic problem with multiple causes, such as melanin deposition, venous stasis with hemosiderin deposition, and orbital structural problems such as infraorbital eye bags, infraorbital grooves, and loss of fat or soft tissue volume with bony prominence. Dark eye circle can be classified in to:

- P type: brown hue, combined facial pigmented lesions.
- V type: blue, pink, or purple hue, periorbital puffiness.
- S type: shadow hue, infraorbital bags, infraorbital grooves, blepharoptosis.
- M type: PV, PS, VS, PVS (Huang et al., 2013).

Histological characteristics of infraorbital darkening suggest that they are caused by multiple etiologic factors that include dermal melanin deposition, post inflammatory hyperpigmentation secondary to atopic or allergic contact superficial dermatitis, periorbital edema, location vasculature, and shadowing due to skin laxity (Freitag and Cestari, 2007; Sarkar and Das, 2018).

The therapeutic approach of infraorbital dark circle must be varied according to the cause; in cases of excessive pigmentation, topical bleaching agents and chemical peeling are considered the classical therapies in infraorbital dark circle (Nofal et al., 2018). Complication of chemical peeling is postinflammatory hyperpigmentation (Sarkar et al., 2016).

Lasers, fillers, and autologous fat transplantation have been used with varying degrees of success. Although different modalities are available for the treatment of infraorbital dark circle, the outcomes of most of them are unsatisfactory (Nofal et al., 2018). Complication of filler injection in the lower eyelid; contour irregularities, bluish-discoloration or Tyndall effect, inflammatory reactions, and infection; Ischaemic complications, such as soft tissue necrosis and visual compromise (*Hwang*, 2016)

efficacy of platelet rich plasma the infraorbital circles is also tried. Improvement was noted so far as colour homogeneity of the region is concerned, but larger studies are required for external validity of the results (Sarkar and Das, 2018).

In fact, plasma gel has proved to reverse the ultraviolet light-derived skin photoaging, also known as solar elastosis, by inducing dermal fibroblast proliferation, preventing cellular apoptosis and promoting the neo-angiogenesis, which is translated into a thickened dermis with newly synthetized collagen and elastic fibres (Fedyakova et al., 2018).

An injectable autologous plasma gel-based 3D formulation has been recently described. This new gel-like formulation provides long-term shape and volume stability while delivering bioactive molecules thus enhancing tissue regeneration (Fedyakova et al., 2019). For correction of the aging face, surgeons are devising more procedures with fewer incisions and shorter postoperative recovery periods. Many of these procedures use absorbable and nonabsorbable sutures (De Masi et al., 2016).

Polydioxanone threads differ from the other biostimulators because they gradually induce a minimal foreign body reaction. This granulation tissue forms a scaffold which supports the sagging tissue and tightens the skin. It also improves skins vitality and elasticity (Khalili, 2015).

Upon collagen formation activation, the collagen fibres of the dermis thickened, and the elastic fibres were prolonged. These changes in collagen persisted for up to 12 months (Yoon et al., 2018).

PDO thread insertion was reported to not only tighten and lift the face but also to improve skin texture with brightened complexion and skin elasticity. However, the mechanism underlying these positive skin changes remained unclear. There was a study reporting increased collagen production around inserted PDO thread (Yoon et al., 2018).

AIM OF THE WORK

To compare between the efficacy and safety of threads versus autologous plasma gel for infraorbital rejuvenation

Chapter 1

Infraorbital Region Anatomy, Pathogenesis of Dark Circle & Skin Aging

I-Anatomy

The infraorbital region is a component of the midface and can be defined as the anatomical area between the nasal aperture and the zygomatic bone below the inferior rim of the orbit and above the roots of the maxillary canine and premolars. This area contains several clinically important structures including the infraorbital foramen (IOF), the infraorbital nerve (ION) and artery (IOA), and their various branches to the adjacent anatomical structures (*Ilankovan*, 1991).

Multiple fields of medicine operate in the infraorbital region including dentistry, dermatology, maxillofacial surgery, plastic ophthalmology, surgery, and rhinology. The neurovascular bundle of the IOF is therefore frequently encountered in a host of procedures in the infraorbital region including closure of simple lacerations, biopsies, scar revisions, cosmetic cutaneous procedures, oral and maxillofacial surgical interventions, and endoscopic maxillary sinus surgery. The identification and preservation of the ION in maxillofacial trauma, although at times challenging, are laudable goals. The most certain way to avoid damage to the ION is to understand

the structures and spatial relationships in the region contiguous with the IOF (*Cutright et al. 2003*).

The infraorbital space has been delineated as the area below the infraorbital foramen. The space is bounded by four facial muscles, i.e., medially by the levator labii superioris alaeque nasi, laterally by the levator anguli oris, at its superior margin by the origin of the levator labii superioris, and at its inferior margin by the orbicularis oris. The infraorbital space is covered by the levator labii superioris muscle (Chap. 2) (*Hu et al.*, 2006).

Tear trough:

The tear trough was defined anatomically as the medial lower eyelid depression that is bounded medially by the anterior lacrimal crest and inferiorly by the inferior orbital rim (**Figure 1**). Biometric measurement of the tear trough depth was made with calipers using the following landmarks: one point of the caliper was placed on the bony prominence of the anterior lacrimal crest (the superior border of the tear trough), and the other was placed on the surface of the skin in the deepest portion of the tear trough (*Wong et al., 2012*).