

بسم الله الرحمن الرحيم

000000

تم رقع هذه الرسالة بواسطة / سلوي محمود عقل

بقسم التوثيق الإلكتروني بمركز الشبكات وتكثولوجيا المطومات دون أدنى مسنولية عن محتوى هذه الرسالة.

NA		T R	ملاحظات:
4 1	6997		
	AIMSWAM	R. CIVILLE HARINA	
1	5/15/20	1992	- 1 3 m. f

بمكات وتكنولوجبارته

Approval Sheet

Student Name: Mona El-Said Mohamed Shams El-deen

Title of thesis:

Effect of food and supplements rich in folic acid, B12 and B6 on the

level of homocysteine and lipid profile in rats.

Degree: M.Sc.in Specific Education- Home Economic

(Nutrition and Food Science)

The Thesis for **Master Degree** has been approved by:

Prof. Dr. Ashraf Abd El-Aziz Abd El-Megeid, Prof. of Nutrition,

Nutrition and Science, Dept., Faculty of Home Economics, Helwan

University.

Prof. Dr. Usama El-Saved Mostafa, Prof. of Food Sci. & Nutrition,

Former Head of Home Economic Dept., Dean of Faculty of Specific

Education, Ain Shams University.

Prof. Dr. Walla Ibrahim Aniess, Prof. of Food Sci, & Nutrition, Home

Economic Dept., Faculty of Specific Education, Ain Shams

University.

Dr. Jihan Ibrahim Abdel Wahab, Assistant Professor of Nutrition and

Food Sciences, Department of Home Economics Dept., Faculty of

Specific Education, Ain Shams University

Committee in change:

Date: //

ACKNOWLEDGMENT

First and foremost, all thanks and gratitude to **Allah**, the Most Merciful, gives us the power to accomplish this work.

I would like to express my grateful appreciation and deepest thanks to **Prof. Dr. Usama El-Sayed Mostafa,** Prof. of Food Science. & Nutrition, Former Head of Home Economic Dept., Dean of Faculty of Specific Education, Ain Shams University for his direct supervision, Valuable guidance, advice, great help and his great support and continuous encouragement throughout this study.

My grateful thanks to **Dr. Jihan Ibrahim Abdel Wahab**, Assistant Professor of Nutrition and Food Sciences, Department of Home Economics Dept., Faculty of Specific Education, Ain Shams University for her provided me with continuous encouragement and assistance throughout this work.

ABSTRACT

Hyprhomocysteinemia has been associated with an increased risk of atherosclerosis and other cardiovascular diseases. Vitamin B₆, B₁₂ and folic acid are essential components in the metabolism of homocysteine. This study aimed to assess the effects of vitamin B₆, B₁₂, folic acid and the combination of them from supplemented and natural sources in the prevention of hyperhomhocysteine. The studies were carried out with 60 albino rats weighted range from (130 \pm 10 g) were purchased from national research center community (Doke). The rats were divided into main groups: The first main group include 6 rats were fed on basel diet, the second main group fed on basel diet methionine and divided into 9 sup groups treated with supplements (B_6 , B_{12} and folic acid) or food (milk, meat and cowpea). The measure of Homocysteine, Heart enzymes, lipid profile, liver functions, Kidney functions and Histopathological examination of (liver, Kidney and Heart) were done. A dose of folic acid and mixture of B₆, B₁₂ and folic acid in the high methionine diet it have a good effect on the level of homocysteine, heart enzymes in the serum of experimental rats and had effect on the lipid profile. This study showed that taking doses of foods and nutritional supplements containing B₆, B₁₂ and folic acid in a diet high in methionine had an effect on reducing the level of homocysteine and heart enzymes and improving serum lipid profile in rats, so it is preferable that eating the diet contain foods rich in B₆, B₁₂ and Folic acid could prevent and reduce diseases.

Key Words: B_6 , B_{12} , Folic acid, Methionine, Homocysteine and Cardiovascular diseases.

List of Contents

Title	Page No.
List of Tables	
List of Figures	ii
List of Abbreviations	v
1.Introduction	1
2. Aim of the study	3
3-Review of Literature	4
4. Materials and Methods	27
5. Results and Discussion	38
6. Recommendation	62
7. Summary	63
References	
Arabic Abstract	
Arabic Summary	

List of Tables

Table No.	Title	Page No.
Table (A):	Standard composition of basal diet	
Table (B):	Composition of basal diet and rich foods of and folic acid	
Table (C):	Constituents of vitamin mixture used in the	study30
Table (D):	Constituents of salt mixture used in the stud	ly31
Table (1):	Effect of B ₆ , B ₁₂ and Folic acid supplem natural foods sources of those vitamin on the Homocysteine	e level of
Table (2):	Effect of B ₆ , B ₁₂ and Folic Acid Supplem natural foods sources of those vitamin on enzymes in rats	the heart
Table (3):	Effect of B ₆ , B ₁₂ and Folic Acid Supplem natural food sources of those vitamins of weight, BWG, Feed and FER in rats	on Body
Table (4):	Effect of B_6 , B_{12} and Folic Acid Supplem natural foods on the organs weight (g /100g	
Table (5):	Effect of B_6 , B_{12} and Folic acid Supplem natural foods on the Lipid profile in rats	
Table (6):	Effect of B ₆ , B ₁₂ and Folic Acid Supplem natural foods and on the liver function in rational states.	
Table (7):	Effect of B ₆ , B ₁₂ and Folic acid Supplem natural foods milk, meat and cowpea nature on the kidney function in rats.	ral foods

List of Figures

Fig. No.	Title	Page No.
Figure (1):	Scheme summarizing the pathologies hyperhomocysteine has a fundamental role i and development.	n the onset
Figure (2):	Schematic diagram of homocysteine and no biosynthesis, together with the metabolic of trans-sulfuration and re-methylation ling folate cycle	processes aked to the
Fig (1):	Living of rats in group 1 Showing histological structure of the central surrounding hepatocytes in the parenchym x40).	vein and na. (H&E,
Fig (2):	liver of rats in group 2 showing sever dicentral vein.(H&E,x16)	
Fig (3):	liver of rats in group 3 showing fatty of some individual hepatocytes . (H&E, X 8	_
Fig (4):	liver of rats in group 4 Showing normal h Structure. (H&E, 40)	•
Fig (5):	liver of rats in group 5 Showing inflamm Infiltration in the portal area With focal agg the Parenchyma. (H&E, x 40)	regation in
Fig (6):	liver of rats in group 6 Showing dilatation veins with inflammatory cells infilt surrounding adjacent area. (H&E, x 40)	ration in
Fig (7):	liver of rate in group 7 Showing inflammatory cells infiltration in portal ar x 40).	ea. (H&E,
Fig (8):	liver of rats in group 8 showing focal infl cells infiltration with Fatty change in he (H&E, x 40)	ammatory patocytes.

List of Figures (Cont...)

Fig. No.	Title	Page No.
Fig (9):	liver of rats in group 9&10 s histological structure. (H&E, x 40).	
Fig (10):	kidney of rats in group 1 Sinistological Structure of the glomes at the cortex. (H&E, x 40)	ruli and Tubules
Fig (11):	Kidney of rats in group 2 Showing no glomerular tufts with dilatation of the with degeneration and necrobiotic tubular lining Epithelium. (H&E, x 4	bowman's space changes in the
Fig (12):	Kidney of rats in group3 showing inflammatory cells infiltration in tubules at the cortex (H&E, x 40)	n between the
Fig (13):	Kidney of rats in group4 Showing N dilatation of the Bowmen's space in at the cortex. (H&E, x 40)	some glomeruli
Fig (14):	Kidney of rats in group5 Showing Focells Infiltration and oedema were not the tubules at the cortex. (H&E, x 40).	oticed in between
Fig (15):	Kidney of rats in group 6 Showing necrobiotic changes in the tubular at Portion. (H&E, x 40).	corticomedullary
Fig (16):	Kidney of rats in group 7 S histopathological Structure. (H&E.)	
Fig (17):	Kidney of rats in group 8 nephropath of the Bowman's space in some Glo 40).	omeruli. (H&E, x
Fig (18):	Kidney of rate in group 9 S histopathological Structure. (H&E,	
Fig (19):	Kidney of rats in group10 s histopathological Structure. (H&E, x 4	•
	List of Figures (Cont)	

Fig. No.	Title	Page No.
Fig (20):	heart of rats in group 1 showing nor structure of the myocardial. (H&E, 4	_
Fig (21):	heart of rats in group 2 showin inflammatory cells infiltration (H&E	_
Fig (22):	heart of rats in group 3 showing inflammatory cells myocardium i myocardial bundles.(H&E,x 40)	n between the
Fig (23):	heart of rats in group 4 showing foc of red blood cells in betwee bundles.(H&E,x40)	en myocardial
Fig (24):	heart of rats in group 5 showing vacutunica media of the large blomyocardium. (H&E,x 40)	od vessels in
Fig (25):	heart of rats in group6 showing nor structure. (H&E,x 40)	
Fig (26):	heart of rats in group 7 showing inflammatory cells infiltration sub exercises (H&E, x 40)	ndocardial layer
Fig (27):	heat of rats in group 8 showinflammatory cells infiltration in myocardium bundles	n between of
Fig (28):	heart of rats in group 9 Show inflammatory infiltration in myoca (H&E, X 4).	ardium bundles.
Fig (29):	heart of rats in group 10 show extravagated red cells blood cel myocardial (H&E, x 4)	lls in between

List of Abbreviations

Abb.	Full term
ALT	Alanine aminotransferase
AST	Alanine aminotransferase
BW	body weight
BWG	body weight gain %
FER	Feed efficiency
FI	Feed intake
<i>CAD</i>	Coronary artery disease
CVD	Cardiovascular disease
<i>MET</i>	Methionine
HCY	Homocysteine
<i>CY</i>	Cysteine
<i>HHCY</i>	Hyperhomocysteinemia
<i>EFSA</i>	European Food Safety Authority
<i>WHO</i>	World Health Organization
<i>CK</i>	Creatine kinase
<i>CK-MB</i>	Creatine kinase-MB
<i>TC</i>	Total cholesterol
<i>TG</i>	Triglycerides
<i>LDL-c</i>	Low- density lipoprotein cholesterol
HDL-c	High- density lipoprotein cholesterol
	Very low density lipoprotein
<i>FA</i>	Folic Acid (folacin)
Vit. B ₁₂	Cobalamin
Vit. B6	Pyridoxine
(AMI	acute myocardial infarction
<i>SPSS</i>	Statistical Package for the Social Sciences
Mg	Milligram
<i>MI</i>	
Mg/dl	Milligrams per deciliter

List of Abbreviations (Cont...)

Abb.	Full term
5-FTHF	5-formyltetrahydrofolate
%	Percentage
μg/mL	Microgram per Milliliter
g/1	Gram per liter
g	Gram
mmol/1	Millimoles per deciliter
<i>RDA</i>	Recommended dietary allowances
FDA	Food and drug administration
<i>CDC</i>	Center for Disease Control
<i>T2D</i>	type-2 diabetes
DNA	Deoxyribonucleic acid
<i>RNA</i>	Ribonucleic acid
<i>UL</i>	Upper limit
DV	Dose of vitamin
NTDs	Neural tube defects
<i>THF</i>	Tetra hydro folic acid
mcg	Micrograms
<i>ESC</i>	The European Society of Cardiology

1.INTRODUCTION

ardiovascular diseases (CVDs), consisting of ischemic heart disease, stroke, heart failure, peripheral arterial disease, and a number of other cardiac and vascular conditions, constitute the leading cause of global mortality and are a major contributor to reduced quality of life in 2017, CVD caused an estimated 17.8 million deaths worldwide, corresponding to 330 million years of life lost and another 35.6 million years (*Yang et al.*, 2020). According to the WHO, the most important risk factors of heart disease are an unhealthy diet physical inactivity, tobacco use and harmful use of alcohol the effects of behavioral risk factors are: hypertension, diabetes, hyperlipidemia, overweight and obesity (WHO, 2015).

On the other hand, methionine has an increasing effect on HDL cholesterol, Proper balanced nutrition is one of the factors affecting human health throughout life to avoid injury of diseases should contain balanced food on all nutrients in quantities appropriate to the needs. But one of the main factors that have a direct role in heart disease is "homocysteine", which is a natural amino acid found in cells and plasma, and plays a major role in destroying the arteries of the body more than smoking, obesity or cholesterol itself. (*Karakula et al.*, 2009).

Homocysteine metabolism stands at the intersection of two pathways: demethylations to methionine, which requires folate and vitamin B_{12} (or betaine in which is an important amino acid, due to a deficiency in folate and vitamin B_{12} and B_6 The body consists of the displacement of the methyl group of amino acid methionine and this process needs factors help without It does not convert an alternative reaction); and transculturation to cystathionine,

which requires pyridoxal-5'-phosphate. The two pathways are coordinated by S-adenosylmethionine, which acts as an allosteric inhibitor of the methylenetetrahydrofolate reductase reaction and as an activator of cystathionine β -synthase Hyperlipidemia and hyperhomocysteinemia are the major risk factors of CVDs (*Obeid and Herrmann*, 2009).

High plasma homocysteine concentrations accompanying low concentrations of folate and vitamin B₆ (through their role in homocysteine metabolism), are associated with an increased risk of extra cranial carotid artery stenosis. (*Abdul-Latif et al.*, 2013).

Homocysteine is responsible for oxidation of the LDL cholesterol accelerating the development of the atherosclerotic plaques (*Sierakowska-Fijatek et al.*, 2008) and info fences the processes of blood clotting by adhesion of blood platelets to the vascular endothelium (*Karakula et al.*, 2009).

The process of homocysteine re-methylation requires an adequate supply of folic acid, vitamin B_{12} and vitamin B_{6} (*Biezanowska-kopec et al.*, 2012 and Lieu et al., 2008).

2. AIM OF THE STUDY

T he study aimed to investigate the effect of food and supplements rich in folic acid, B_{12} and B_6 on the level of homocysteine and lipid profile in rats Through the following determinations:

- 1- Methionine, homocysteine, heart enzyme (ck, ckmb).
- 2- Feed intake, FER and body weight gain % for rats.
- 3- Serum lipid profile including (serum total cholesterol, triglycerides, HDL-C: High-density lipoprotein, LDL-C: Low-density lipoprotein, VLDL-C: very-low- density lipoprotein).
- 4- Serum liver enzymes (AST Alanine aminotransferase).and ALT: Alanine aminotransferase).
- 5- Serum kidney enzymes (Urea, Creatinine and Uric acid).
- 6- Histopathological examination. (Liver, Kidney and Heart).

3- Review of Literature

3. 1. Heart

The heart is a muscular organ that serves to collect deoxygenated blood from all parts of the body, carries it to the lungs to be oxygenated and release carbon dioxide. Then, it transports the oxygenated blood from the lungs and distributes it to all the body parts, the heart pumps around 7,200 liters of blood in a day throughout the body, the heart is situated at the center of the chest and points slightly towards the left, On average, the heart beats about 100,000 times a day, i.e., around 3 billion beats in a lifetime. (Yaniv Sherer et al., 2004).

An adult heart beats about 60 to 80 times per minute, and newborn babies heart beats faster than an adult which is about 70 to 190 beats per minute. The heart has a somewhat conical form and is enclosed by the pericardium. It is positioned posteriorly to the body of the sternum with one-third situated on the right and two-thirds on the left of the midline. The heart measures 12 x 8.5 x 6 cm and weighs ~310 g (males) and ~255 g (females). (*Biglu, and Dadashpour. 2016*).

Cardiac rehabilitation is a complex, interprofessional intervention customized to individual patients with various cardiovascular diseases such as Coronary artery disease (CAD), Heart failure, Myocardial infarctions Patients who have undergone cardiovascular interventions such as coronary angioplasty or coronary artery bypass grafting. (Shoenfeld et al., 2006).