

شبكة المعلومات الحامعية

بسم الله الرحمن الرحيم

-Caro-

شبكة المعلومات الحامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ببكة المعلم مات المامعية

hossam maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

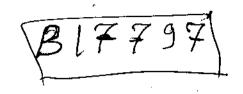
قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغيار

شبكة المعلومات الجامعية



شبكة المعلومات الحامعية

بالرسالة صفحات لم ترد بالأصل

STUDIES OF SOME SOIL PHYSICAL PROPERTIES IN RELATION TO SOIL EROSION IN HALAIB

BY

MOSTAFA ABD EL ADL DARWISH

B.Sc. Soil Science, 1990

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Degree of MASTER

in

AFRICAN STUDIES
(NATURAL RESOURCES)
(Earth Resources)

Under Supervision of

Prof. Dr. Adel Saad El-Hassanin

Prof. of Soils Science and Vice Dean of Graduate Studies and Research, Inst. of African Research and Studies, Cairo University

Prof. Dr. Awatif Ayoub

Prof. of Soil Science, Soils, Water and Environ. Research Inst. Agric. Research Center Dr. El-Sayed Ibrahim Gaber

Assoc. Prof. of Soil Science,
Dept. of Natural Resources Inst. of
African Research and Studies, Cairo University

APPROVAL SHEET

STUDIES OF SOME SOIL PHYSICAL PROPERTIES IN RELATION TO SOIL EROSION IN HALAIB

BY

MOSTAFA ABD EL ADL DARWISH

B.Sc. Soil Science, 1990

Αı	qq	rov	ed	by	
----	----	-----	----	----	--

Prof. Dr. M. Essam Shawky

Prof. of Soil Physics, Soil Sci. Dep., Fac. of Agric., Cairo University

Prof. Dr. Salah El-Din Bakr El-Amir Salah & Amir
Prof. of Soil Physics, Soil Sci. Dep., Fac. of Agric., Cairo University

Prof. Dr. Adel S. El-Hassanin

Prof. of Soils Sci., and vice dean of graduate studies and research, Inst. of African Research and Studies, Cairo university

Dr. El-Sayed Ibrahim Gaber

Assec. Prof. of Soils Sci., Dept. of Natural Resources, Inst. of African Research and Studies, Cairo university

Date: / / 2000

CONTENTS

	·	Page
1.	INTRODUCTION	1
2.	REVIEW OF LITERATURE	2
	2.1. Soil erosion by water	2
	2.1.1. Processes and mechanics of erosion	2
	2.1.2. Factors influencing erosion	3
	2.1.3. Impact of erosion on soil properties	13
	2.1.4. Rates of soil erosion and soil formation	20
	2.1.5. Erosion control measures	21
	2.1.5.1. Contouring	21
	2.1.5.2. Contour bunds	21
	2.1.5.3. Terraces	22
	2.1.5.4. water ways	22
	2.1.5.5. Stabilization structures	23
	2.1.5.6. windbreaks	23
	2.1.5.7. Geotextiles	23
3.	MATERIALS AND METHODS	25
	3.1. Area description and locations of soil profiles	25
	3.1.1The main features of Halaib	25
	3.1.1.1Climate	25
	3.1.1.2 Topography	26
	3.1.1.3 Geology of the studed area	29
	3.1.1.4 Soils	31
	3.1.1.5 Vegetation	31
	3.2. Erosion parameters determinations of soil profiles	31
	3.3. Soil sampling and methods of analysis	33
	2.3.1. Physical properties	36
	2.3.2. Chemical properties	38
4	. RESULTS AND DISCUSSION	40
	4.1. Soil erosion parameters	40
	4.1.1. Rain fall erosivity factor	40
	4.4.0. Call analitable, factor	4.4

		page
	4.1.3. Slope length and steepness factor	50
	4.1.4. Crop management factor (C)	50
	4.1.5. Conservation factor	53
	4.1.6. Using USLE in predicting soil loss	53
4	1.2. Impact of erosion on soil physical properties	54
	4.2.1. Particle size distribution	54
	4.2.2. Calcium carbonate	61
	4.2.3. Gypsum	61
	4.2.4. Organic matter	61
	4.2.5. Grain size parameter	66
	4.2.6. Bulk density	75
	4.2.7. Gravels	82
	4.2.8. Total porosity	83
	4.2.9. Moisture retention curves	83
	4.2.10. Pore size distribution	92
	4.2.11. Soil moisture content, field capacity, wilting point and available water capacity	
	4.2.12. Hydraulic conductivity	100
	4.2.13. Infiltration rate (Basic intake rate)	101
	4.3. Impact of erosion on soil chemical properties	
	4.3.1. Soluble calcium and magnesium	101
	4.3.2. Soluble sodium and potassium	104
5.	SUMMARY	
6.	REFERENCES	. 112
	ARABIC SUMMARY	

LIST OF TABLES

Tab	le page
1.	Meteorogical date of Halaib area (1987 – 1996)34
2.	The rainfall values for period of ten years (1987 – 1996)41
3.	Monthly distribution of erositivity factor "R " during 1987 – 1996 years (according to USLE)
4.	Erodibility factor " K " based on Wischmeir's Namograph in Wadia Sermatia45
5.	Erodibility factor " K " based on Wischmeir's Namograph in Wadia Odiab46
6.	Erodibility factor " K " based on Wischmeir's Namograph in Wadia Doeat47
7.	Erodibility factor " K " based on Wischmeir's Namograph in Wadia Deep Craff48
8.	Calculation of slope steepness factor (LS) in wadi Sermatia51
9.	Calculation of slope steepness factor (LS) in wadi Odiab51
10.	Calculation of slope steepness factor (LS) in wadi Doeat
11.	Calculation of slope steepness factor (LS) in wadi Deep Craff52
12.	Particle size distribution, texture class for soil profiles of the studied area in wadi Sermatia
13.	Particle size distribution, texture class for soil profiles of the studied area in wadi
	Odiab56
14.	Particle size distribution, texture class for soil profiles of the studied area in wadi
	Doeat57
15.	Particle size distribution, texture class for soil profiles of the studied area in wadi Deep Craff
16.	Particle size distribution, texture class for soil profiles of the studied area in outside wadi Sermatia and Odiab
17.	Particle size distribution, texture class for soil profiles of the studied area in outside wadi Doeat and Deep Craff
18	. Phi – graphic mean diameter, inchusive deviation graphic skewness and graphic kurtosis in the studied soil sample of the different profile in wadi Sermatia
19	Phi – graphic mean diameter, inchusive deviation graphic skewness and graphic kurtosis in the studied soil sample of the different profile in wadi Odiab
20	. Phi – graphic mean diameter, inchusive deviation graphic skewness and graphic

21.	Phi – graphic mean diameter, inchusive deviation graphic skewness and graphic kurtosis in the studied soil sample of the different profile in Deep Carff
	Particale density, bulk density, total porosity and gravel percentage for soil profile of Wadi Sermatia
	Particale density, bulk density, total porosity and gravel percentage for soil profile of Wadi Odiab77
	Particale density, bulk density, total porosity and gravel percentage for soil profile of Wadi Doeat
25.	Particale density, bulk density, total porosity and gravel percentage for soil profile of Wadi Deep Craff79
26.	Particale density, bulk density, total porosity and gravel percentage for soil profile outside wadi Sermatia and Odiab
	Particale density, bulk density, total porosity and gravel percentage for soil profile outside wadi Doeat and Deep Craff81
28.	Retained moisture percentage by volume and equivalent pore diameter in for the studied Soil profiles at wadi Sermatia84
29.	Retained moisture percentage by volume and equivalent pore diameter in for the studied Soil profiles at wadi Odiab85
30.	Retained moisture percentage by volume and equivalent pore diameter in for the studied Soil profiles at wadi Doeat86
31.	Retained moisture percentage by volume and equivalent pore diameter in for the studied Soil profiles at wadi Deep Craf
32.	Hydraulic conductivity, field capacity, wilting point, available water, pore size distribution For soil profiles of wadi Sermatia93
33.	Hydraulic conductivity, field capacity, wilting point, available water, pore size distribution For soil profiles of wadi Odiab94
34.	Hydraulic conductivity, field capacity, wilting point, available water, pore size distribution For soil profiles of wadi Doeat95
35.	Hydraulic conductivity, field capacity, wilting point, available water, pore size distribution For soil profiles of wadi Deep Craff96
36.	Hydraulic conductivity, field capacity, wilting point, available water, pore size distribution For soil profiles outside wadi Sermatia and wadi Odiab
37.	Hydraulic conductivity, field capacity, wilting point, available water, pore size distribution For soil profiles outside wedi Doest and wadi Deep Craff

Table	page
38. Infiltration rate (mm/mint) at different wadis	102
39. Correlation coefficients (r) between soil componet and some physical pro Studied soil samples	
40. Chemical properties of soil samples collected from Halaib wadi Sermatia	105
41. Chemical properties of soil samples collected from Halaib wadi Odiab	106
42. Chemical properties of soil samples collected from Halaib wadi Doeat	107
43. Chemical properties of soil samples collected from Halaib wadi Deep Craft	f108

÷

LIST OF FIGURES

Fig	Figure F	
1.	Geomorphological map of the studied area	26
2	Studied area and locations of soil profiles	27
3	Elevation of soil profiles with distance (1971) from the sea	35
4	Nomograph of Wichmier et al., to determine soil erodibity factor K	49
5	CaCo ₃ gypsum and organic matter for the studied soil in wadi sermati	62
6	CaCo ₃ gypsum and organic matter for the studied soil in wadi Odaib	63
7	CaCo ₃ gypsum and organic matter for the studied soil in wadi Doeat	64
8	CaCo ₃ gypsum and organic matter for the studied soil in wadi Deep Craff	65
9	Cumulative frequency curves of wadi Sermatia	67
10	Cumulative frequency curves of wadi Odiab	68
11	Cumulative frequency curves of wadi Deep Doeat	69
12	2 Cumulative frequency curves of wadi Sermatia	70
13	Moisture retention Curve for the investigated Soil profiles at wadi Sermatia	88
14	Moisture retention Curve for the investigated Soil profiles at wadi Odaib	89
15	Moisture retention Curve for the investigated Soil profiles at wadi Doeat	90
16	Moisture retention Curve for the investigated Soil profiles at wadi Deep Craff	91

ACKNOWLEDGEMENT

The author wishes to express his sincere appreciation and deep gratitude to **Prof. Dr. Adel Saad El-Hassanin** professor of Soil Science, and vic dean of graduate studies and research, Inst. of African Research and Studies, Cairo University for suggesting the subject, guidance, valuable help and encouragement during the preparation of this manuscript.

Great thanks to **Prof. Dr. Awatif A. Wahdan**, professor of Soil Science, Soil, Water and Environment Res. Inst., Agric. Res. Center for her supervision, help, advice, guidance and continuous encouragement at all stages of this work.

Thanks, are also extend to **Dr. Sayed I. Gaber, Assoc. Prof.** of Soil Science, Inst. of African Research and Studies, Cairo University for his supervision, advice, valuable assistance and encourage during the course of this work.

Grateful acknowledgement to **Prof. Dr. Wafaei Ei-Hosani** and **Prof. Dr. Ahmed Said Ahmed** Prof. of Soil Science, Soil, Water and Environment Res. Inst., Agric. Res. Center, for their assistance in field and laboratory work.

Thanks are also due to all the staff members the dept of Natural Resources Inst of African Research and Studies and to the staff members of Soil, Water and Environment Res. Inst., Agric. Res. Center.

1. INTRODUCTION

Soil erosion has always occurred in nature which causes soil losses due to natural forces. The man's interference has greatly accelerated erosion by intensifying cultivation, applying short cycles of shifting cultivation, ploughing steep slopes and continuing overgrazing and deforestation. The water erosion is an important factor which causes soil losses by detaching soil particles from the surface soil mass and transporting them. One serious result of water erosion is the loss of an appreciable part of the rooting zone and the retardation of the normal rate of soil profile development on the upper reaches of slopes.

Soil erosion is a compound phenomenon. It is the result of many processes and interactions of controlling variables such as climate, vegetation, soil characteristics, and topography. Rain drop and run off water have sufficient energy to cause soil deterioration and degradation. The movement of soil by water is a complex process. It is influenced by the amount, intensity and duration of rainstorm, amount and velocity of surface flow, nature of the soil, ground cover, and stope of the land surface ...etc.

This research aims to study and evaluate soil erosion by water in Halaib area. Analyses of erosion parameters and the effect of water erosion on physical soil properties were investigated and the subsequent soil physical properties changes.