

hossam maghraby

بسم الله الرحمن الرحيم

مركز الشبكات وتكنولوجيا المعلومات قسم التوثيق الإلكتروني

-Color :000

hossam maghraby

جامعة عين شمس

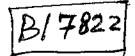
التوثيق الإلكتروني والميكروفيلم

قسو

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

-C-102-

hossam maghraby



بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

9/0700

ANALYTICAL STUDY OF SOME IMPORTANT HORMONES CONTAINING PHARMACEUTICALS FORMULATIONS

THESIS

Presented by

Heba Helal Refat Boules

B. Pharm. Sci. (1988)

For the Partial Fulfillment of the Master Degree in Pharmaceutical Science

(Analytical Chemistry)

Supervised by

Prof.Dr.

Azza Aziz Mohamed Moustafa

Professor of Analytical Chemistry

Faculty of Pharmacy

Cairo University.

Assistant Prof.Dr.
Lories Ibrahim Bebawy
Assistant Professor of
Analytical Chemistry
National Organization for
Drug Control and Research.

J. J. P.

Faculty of Pharmacy Cairo University 2002

APPROVAL SHEET

The thesis has been approved by the committee in charge on 14 / 2 / 2002

1. Prof. Dr. Hamed Mahmoud El Fatatry.

Professor of Analytical Chemistry
Faculty of Pharmacy
Tanta University.

Cey O

2. Prof. Dr. Mohamed Abd El Kaway Ibrahim.

Professor of Analytical Chemistry
Faculty of Pharmacy
Cairo University.

- W

3. Prof. Dr. Badr A. El Zeiny.

Professor and Head of Analytical Chemistry Department.

Faculty of Pharmacy

Cairo University.

Many of

4. Assistant Prof. Dr. Lories Ibrahim Bebawy.

Assistant Professor of Analytical Chemistry
National Organization for Drug Control and Research.

(July) - 2

NOTE

Besides the work carried out in this thesis, the candidate has attended and successfully passed the postgraduate courses examination with the grades mentioned in the following:

	Subject	<u>Grade</u>
•	Quality Control	Excellent
•	Stability Indicating Methods	Excellent
•	Bioavailability	Excellent
•	Instrumental Analysis	Good
•	Computer and its Application	Good
•	Searching in Literature	Very Good
•	Statistics	Pass
•	Higher Mathematics	Pass

Prof. Dr. Badr A.El Zeiny

Prof. and Head of Analytical Chemistry Department

Faculty of Pharmacy

Cairo University.

ACKNOWLEDGEMENT

I am deeply grateful to Prof. Dr. Azza Aziz Mohamed Moustafa, Professor of Analytical Chemistry, Faculty of Pharmacy, Cairo University for her advices, suggesting the point, keen supervision and constructive comments.

I am greatly indepted to Assist. Prof. Dr. Lories Ibrahim Bebawy for her kind guidance, beneficial discussions, continuous encouragement and sincere help offered during the supervision of the work.

It is a pleasure to acknowledge with sincere thanks and appreciation to Prof.

Dr. Badr A.El-Zeany, Head of Analytical Chemistry Department, Faculty of

Pharmacy, Cairo University for all the facilities that helped me to accomplish this
work.

I wish to express my heartily thanks to my husband for his continuous help, effective supports and great encouragement.

Many thanks to my mother for her valuable advices and continuous prayers and to my brother for his kind help.

I would like to extend my thanks to all my colleagues in National organization for Drug Control and Research and in the Analytical Chemistry Department,

Faculty of Pharmacy, Cairo University for their cooperation and encouragement.

Heba Helal

CONTENTS

		PREFACE	Page I
i		ABSTRACT	Ħ
		PART ONE GENERAL INTRODUCTION	
		GENERAL INTRODUCTION	
		PART TWO	
		INTRODUCTION AND LITERAL REVIEW	
	II.0.1	Gestodene	6
	II.0.1.1	Structural Formula	6
	II.0.1.2	Methods of Analysis	6
	П.0.2	Cyproterone Acetate.	7
	II.0.2.1	Structural Formula	7
	П.0.2.2	Methods of Analysis.	8
	II.0.3	Clobetasol Propionate	8
	II.0.3.1	Structural Formula	3
	П.0.3.2	Methods of Analysis.	S
	П.0.4	Halobetasol Propionate	11
Ł	II.0.4.1	Structural Formula	11
	П.0.4.2	Methods of Analysis.	11
	П.0.5	Quinagolide Hydrochloride	12
	$\Pi.0.5.1$	Structural Formula	12
	II.0.5.2	Methods of Analysis	12
		PART THREE	
		DETERMINATION OF GESTODENE AND	
		CYPROTERONE ACETATE	
	шо	Today 1 - 4	
	Ш.0	Introduction	13
	Ш.1	Experimental Study	13
	III.1.1	Samples	13
	III.1.2	Reagents	. 14
	Ш.1.3	Standard Stock Solutions	15
	Ш.1.4	Apparatus	15

SECTION A: COLORIMETRIC DETERMINATION	OF	GESTODEN	E
AND CYPROTERONE ACETATE USIN	G IN	NH REAGEN	Т

$\Pi I.A.0$	Principle	. 17
Ш.А.1	Experimental Study	
III.A.1.1	Scanning of Absorption Spectra of Gestodene and	
	Cyproterone Acetate	17
III.A.1.2	Optimization of Reaction Conditions	17
III.A.1.3	Method Validation	19
III.A.2	Application of the Proposed Method for the Analysis of	
	Gestodene and Cyproterone Acetate in Dosage Forms	20
III.A.3	Results and Discussion	21
SECTION	B: COLORIMETRIC DETERMINATION OF GESTODENE	
	AND CYPROTERONE ACETATE USING TETRAZOLIU	J M
•	BLUE REAGENT.	
III.B.0	Principle	30
III.B.1	Experimental Study	30
III.B.1.1	Scanning of Absorption Spectra of Gestodene and	
	Cyproterone Acetate	30
IП.В.1.2	Optimization of Reaction Conditions	32
III.B.1.3	Method Validation	33
III.B.2	Application of the Proposed Method for the Analysis of	
	Gestodene and Cyproterone Acetate in Dosage Forms	34
III.B.3	Results and Discussion	35
SECTION (C: DENSITOMETRIC DETERMINATION OF GESTODENE	
	AND CYPROTERONE ACETATE	
III.C.0	Principle	44
Ш.С.1	Experimental Study	44
III.C.1.1	Chromatographic Conditions	44
III.C.1.2	Method Validation	45
П.С.2	Application of the Proposed Method for the Analysis of	
	Gestodene and Cyproterone Acetate in Dosage Forms	46
III.C.3	Results and Discussion	47

•

SECTIO	ON D: FIRST DERIVATIVE SPECTROPHOTOMETRIC	
	PROCEDURE FOR THE DETERMINATION OF	
	CYPROTERONE ACETATE.	
III.D.0	Principle	56
III.D.1	Experimental Study	56
III.D.1.1	Scanning of Absorption Spectra of Gestodene and Cyproterone	
	Acetate	
III.D.1.2	Method Validation	
III.D.2	Application of the Proposed Method for the Quantitative	
	Determination of Cyproterone Acetate in Pharmaceutical	
	Formulation	57
III.D.3	Results and Discussion:	57
	PART FOUR	
	DETERMINATION OF CLOBETASOL PROPIONATE	
	AND HALOBETASOL PROPIONATE	
	•	
177.0		
IV.0	Introduction	66
IV.1	Experimental Study	66
IV.1.1	Samples	66
IV.1.2	Reagents	67
IV.1.3	Standard Stock Solutions	67
IV.1.4	Apparatus	67
SECTION	A: COLORIMETRIC DETERMINATION OF CLOBETASOI	
SECTION	PROPIONATE AND HALOBETASOL PROPIONATE	1
	USING DDQ REAGENT THROUGH CHARGE TRANSFE	*
	COMPLEXATION.	K
	COMI BEARTION,	
IV.A.0	Principle	68
IV.A.1	Experimental Study	69
IV.A.1.1	Hydrazone Formation of the Corticosteroids	69 .
IV.A.1.2	Scanning of Absorption Spectra of Clobetasol Propionate and	0 7.
	Halobetasol Propionate	69
IV.A.1.3	Optimization of Reaction Conditions	71
IV,A,1,4	Determination of the Stoichiometry of the Reaction	71.
[V.A.1.5	Method Validation	71. 71
IV.A.2	Application of the Proposed Method for the Analysis of	11
	Clobetasol Propionate and Halobetasol Propionate	72
V.A.3	Results and Discussion	73
		10

	PROPIONATE AND HALOBETASOL PROPIONATE USING IODINE REAGENT THROUGH CHARGE	
	TRANSFER COMPLEXATION.	
IV.B.0	Principle	83
IV.B.1	Experimental Study	83
IV.B.1.1	Hydrazone Formation of the Corticosteroids	83
IV.B.1.2	Scanning of Absorption Spectra of Clobetasol Propionate and Halobetasol Propionate	83
IV.B.1.3	Optimization of Reaction Conditions	83
IV.B.1.4	Determination of the Stoichiometry of the Reaction	86
IV.B.1.5	Method Validation	86
IV.B.2	Application of the Proposed Method for the Analysis of	
IV.B.3	Clobetasol Propionate and Halobetasol Propionate	87
C.G. V1	Results and Discussion	87
	PART FIVE	
DET	TERMINATION OF QUINAGOLIDE HYDROCHLORIDE	
V.0	Introduction	97
V.1	Experimental Study	97
V.1.1	Samples	97
V.1.2	Reagents	97
V.1.3	Standard Stock Solutions	98
V.2	Apparatus	99
SECTION A	A: COLORIMETRIC DETERMINATION OF QUINAGOLIDE USING DDQ AND IODINE REAGENT THROUGH CHARG	E
	TRANSFER COMPLEXATION.	
V.A.1	Experimental Study	100
V.A.1.a.1	Scanning of Absorption Spectrum of Quinagolide Hydrochloride.	100
V.A.1.a.2	Optimization of Reaction Conditions	100
V.A.1.b.1	Scanning of Absorption Spectrum of Quinagolide Hydrochloride.	102
V.A.1.b.2	Optimization of Reaction Conditions	102
V.A.2	Determination of Stoichiometry of the Reactions	102
V.A.3	Method Validation	104
V.A.4	Application of the Proposed Methods for Determination of	
V.A.5	Quinagolide Hydrochloride Results and Discussion	105

SECTION B: COLORIMETRIC DETERMINATION OF CLOBETASOL

SECTION B: COLORIMETRIC DETERMINATION OF QUINAGOLIDE HYDROCHLORIDE USING PBT AND NBS REAGENTS.

V.B.0	Principle	116
V.B.1	Experimental Study	110
V.B.1.a	Potassium Bromate Method	110
V.B.1.a.1	Scanning of Absorption Spectrum of Quinagolide Hydrochloride	110
V.B.1.a.2	Optimization of Reaction Conditions	116
V.B.1.b	N- Bromosuccinimide Method	118
V.B.1.b.1	Scanning of Absorption Spectrum of Quinagolide Hydrochloride	118
V.B.1.b.2	Optimization of Reaction Conditions	118
V.B.2	Determination of Stoichiometry of the Reactions	12 0
V.B.3	Method Validation	120
V.B.4	Application of the Proposed Methods for the Determination of	
	Quinagolide Hydrochloride in its Dosage Forms	121
V.B.5	Results and Discussion	122
SECTION C	: SPECTROFLUORIMETRIC DETERMINATION OF QUINAGOLIDE HYDROCHLORIDE.	
V.C.0	Principle	133
V.C.1	Experimental Study	133
V.C.1.1	Scanning of Absorption Spectrum of Quinagolide Hydrochloride.	133
V.C.1.2	Fluorescence Characteristics for Quinagolide Hydrochloride	133
V.C.1.3	Linearity	135
V.C.3	Application of the Proposed Method for the Analysis of Quinagolide	
V.C.4	Hydrochloride in its Dosage Form	135
v.C.4	Results and Discussion	136
• STIMMAR	Y	143
	ICES	148
	UMMARY.	170

LIST OF FIGURES

0.	3	Page
	Absorption Spectrum of Gestodene (20µg.ml ⁻¹) in Methanol at 378 nm Using Isoniazide Reagent	18
•	Absorption Spectrum of Cyproterone Acetate(16μg.ml ⁻¹) in Methanol at 400 nm Using Isoniazide Reagent	18
	Effect of Volume of Isoniazide Reagent (0.2M) on the Formed Reaction Product of Gestodene and Cyproterone Acetate (24µg.ml ⁻¹) of Each.	23
	Effect of Time on the Formed Reaction Product of Gestodene and Cyproterone Acetate (24µg.ml ⁻¹) of Each	23
	Linearities of the Absorbance of the Reaction Product of Gestodene at 378 nm and Cyproterone Acetate at 400 nm with INH to the Corresponding Concentration (4-24µg.ml ⁻¹) and (4-36µg.ml ⁻¹), Respectively	24
	Absorption Spectrum of Gestodene (24µg.ml ⁻¹) in ethanol at 515nm Using Tetrazolium Blue Reagent	31
	Absorption Spectrum of Cyproterone Acetate (24µg.ml ⁻¹) in ethanol at 520 nm Using Tetrazolium Blue Reagent	31
	Effect of Volume of Tetrazolium Blue Reagent (0.5%) on the Absorbance of the Formed Reaction Product of Gestodene and Cyproterone Acetate (24µg.ml ⁻¹) of Each	37
	Effect of Time on the Reaction Product of Gestodene and Cyproterone Acetate (24µg.ml ⁻¹) of Each Using Tetrazolium Blue Reagent	37
	Effect of Temperature on the Reaction Product of Cyproterone Acetate (24μg.ml ⁻¹) Using Tetrazolium Blue Reagent	37

11	Linearities of the Absorbance of the Reaction Product of Gestodene at 515 nm and Cyproterone Acetate at 520 nm with Tetrazolium Blue Reagent to the Corresponding Concentration (4-24μg.ml ⁻¹) and (8-40 μg.ml ⁻¹), Respectively	38
12	TLC Chromatogram	48
13	Scanning Profile of TLC Chromatograms of the studied drugs	49
14	Linearity of the Peak Area to the Corresponding Concentration of Gestodene (2.0-16.0 μg/spot)	50
15	Linearity of the Peak Area to the Corresponding Concentration of Cyproterone Acetate (1.0-7.0 µg/spot)	50
16	Zero Order Absorption Spectra of Cyproterone Acetate A (20µg.ml ⁻¹) and Ethinyl Estradiol B (10µg.ml ⁻¹) in Methanol	- 58
17	First Derivative Spectra of Cyproterone Acetate A (20µg.ml ⁻¹) and Ethinyl Estradiol B (10µg.ml ⁻¹) in Methanol at D ₁ Value 303 nm	58
18	Linearity of the Absorbance D ₁ Value at 303 nm to the Corresponding Concentration of Cyproterone Acetate (8-20µg.ml ⁻¹)	60
19	The Absorption Spectra of (a) Clobetasol Hydrazone Complex (150μg.ml ⁻¹), (b) Halobetasol Hydrazone Complex (200μg.ml ⁻¹), Each at 588 nm and (c) the Blank Reagent Using DDQ (0.5% w/v) in Acetonitrile	70
20	Effect of Volume of DDQ Reagent (0.5%) on the Formed Complex of Clobetasol Propionate (150µg.ml ⁻¹) and Halobetasol Propionate (200 µg.ml ⁻¹) in Acetonitrile	75
21	Stability of Charge Transfer Complexes of Clobetasol Propionate (150µg.ml ⁻¹) and Halobetasol Propionate (200 µg.ml ⁻¹) with DDQ Reagent (0.5%) in Acetonitrile	75

22	Determination of the Stoichiometry of the Reaction of Clobetasol Propionate and Halobetasol Propionate Using DDQ by Job's Method (2x10 ⁻⁴ M) Each	76
23	Linearities of the Absorbance of Clobetasol Propionate and Halobetasol Propionate at 588 nm Using DDQ Reagent to the Corresponding Concentration (20-150 µg.ml ⁻¹) and (50-300 µg.ml ⁻¹), Respectively	77
24	The Absorption Spectra of (a) Iodine Solution (2x10 ⁻³ M) in Chloroform (b) Clobetasol Hydrazone (30 μg.ml ⁻¹), (c) Clobetasol Hydrazone (30 μg.ml ⁻¹)	84
25	The Absorption Spectra of (a) Iodine Solution (2x10 ⁻³ M) in Chloroform (b) Halobetasol Hydrazone (30 µg.ml ⁻¹), (c) Halobetasol Hydrazone Complex (30 µg.ml ⁻¹)	85
26	Effect of Volume of Iodine Solution(2x10 ⁻³ M) with Clobetasol Propionate and Halobetasol Propionate (30 μg.ml ⁻¹) Both in Chloroform	89
27	Effect of Time with Halobetasol Propionate (30 μg.ml ⁻¹) in Iodine Method	89
28	Stability of the Charge Transfer Complex of Clobetasol Propionate and Halobetasol Propionate (30 µg.ml ⁻¹) with Iodine Solution After 45 Min. When the Reaction is Completed	89
29	Determination of the Stoichiometry of the Reaction of Clobetasol Propionate and Halobetasol Propionate Using Iodine Solution by Job's Method (2x10 ⁻⁴ M) of Each	90
30	Linearity of the Absorbance of the Reaction Product of Clobetasol Propionate at 290 nm Using Iodine Reagent to the Corresponding Concentrarion (5-30 µg.ml ⁻¹)	91
31	Linearity of the Absorbance of the Reaction Product of Halobetasol Propionate at 290 nm Using Iodine Reagent to the Corresponding Concentration (8-40 µg.ml ⁻¹)	91