

Evaluation of galectins gene expression in acute myeloid leukemia patients

A Thesis Submitted in Partial Fulfiment of the Requirements for the Award of the Degree of

Master of Science

By

Mahmoud Moustafa Abd-elfatah

B.Sc. (Zoology/chemistry 2013) Under Supervision of

Prof. Dr. Nagwa Hassan Ali Hassan

Professor of cytogenetics
Department of Zoology,
Faculty of Science, Ain Shams University

Prof. Dr. Magda Mahmoud Assem

Professor of clinical pathology National Cancer Institute, Cairo University

Dr. Reham Hassaan Gomaa Helwa

Assistant Professor of molecular cancer biology
Department of Zoology,
Faculty of Science, Ain Shams University

Zoology Department Faculty of science Ain shams University 2020

ACKNOWLEDGMENT

First and foremost, praises and thanks to the God, by whose grace this work had been completed.

I would like to express my deep and sincere appreciation to prof. Dr. Nagwa Hassan Ali, Professor of cytogenetics, Department of Zoology, Faculty of Science, Ain Shams University, for her professional guidance, encouragement and careful monitoring through different stages of this research. I am extremely grateful for everything she has taught me.

I would also like to thank Prof. Dr. Magda Mahmoud Assem, Professor of clinical pathology, National Cancer Institute, Cairo University, for giving me the opportunity to do research. Her energy, vision and constant motivation have also inspired me.

I am extremely grateful for Dr. Reham Hassan Helwa, Assistant Professor of molecular cancer biology, Department of Zoology, Faculty of Science, Ain Shams University. It was a great pleasure and honor to work and study under her guidance. She has taught me the methodology and statistics to perform the research and to present the research works as clearly as possible. You have done so much that I can't find words to express my gratitude.

I appreciate help and encouragement that I have received from my colleagues of my department during the hard time.

Finally, Iam gratefully to my parents for their love and supporting me to complete this research successfully.

Contents

Title	
Abbrevations	1
List of Figures	3
List of Tables	8
Abstract	10
Introduction and Aim of the work	12
Review of literature	15
Materials and methods	65
Results	
Galectins Expression in AML patients	77
Relation of Galectins expression with Clinicopathological data	80
Effect of clinicolaboratory data and the difference in gene expression on	the
response to chemotherapy in the studied cases	127
Survival analysis	131
Spearman Rho correlation analysis	175
Ratio between galectins expression in PB and BM	178
Discussion	192
Conclusion	205
Summary	206
References	209
Arabic summary	228

Abbreviations

AML	Acute myeloid leukemia
APL	Acute promyelocytic leukemia
APCs	Antigen presenting cells
BCL2	B-cell lymphoma 2
BFGF	basic fibroblast growth factor Bone marrow
BM	Bone marrow
CD	Cluster of differentiate
COX	Cyclooxygenase
CRC	Colorectal cancer
CRD	Carbohydrate recognition domain
CR	Complete remission
CT	Cyclic threshold
DCs	Dendritic cells
DEPC	Diethyl pyrocarbonate
DFS	Disease-free survival
ECM	Extracellular matrix
EGFR	epidermal growth factor receptor
ELN	European leukemia net
ERK	Extracellular signal-regulated kinases
FAB	French–American–British
FLT3	Fetal liver tyrosine kinase 3
GAPDH	Glyceraldehyde 3-phosphate dehydrogenase
GSK3	Glycogen synthase kinase 3
HGF	Hepatocyte Growth Factor
HIF	Hypoxia-inducible factors
HIPK2	Homeodomain interacting protein kinase 2

HSCs	Human stem cells
IFN-γ	Interferon gamma
IL-10	Interleukin 10
IPT	Immunophenotyping
JM	Juxta-membrane
LSCs	Leukemia stem cells
MAPK	Mitogen-activated protein kinase
Mcl-1	myeloid cell leukemia 1
МНС	major histocompatibility complex
MMP	Matrix metallopeptidases
MSCs	Mesenchymal stem cells
MUC1	Mucin 1
NK	Natural killer cell
os	Overall survival
PB	Peripheral blood
PDGF	Platelet-derived growth factor receptors
PDL-1	Programmed death-ligand 1
qRT-PCR	quantitative reverse transcription Polymerase chain reaction
RNA	Ribonucleic acid
RT-PCR	Reverse transcription Polymerase chain reaction
STAT3	Signal transducer and activator of transcription 3
TCR	T-cell receptor
TIM3	T-cell immunoglobulin mucin 3
Th1	T-helper cell 1
Th17	T-helper cell 17
TNF-α	tumor necrosis factor
VEGF	Vascular endothelial growth factor
WHO	World health organization

List of figures

Fig 1-1: Schematic diagram showing the development of blood cells from	
hematopoietic stem cells	16
Fig 1-2: Diagram of the FLT3 represented the location of ITD and TKD mutation.	23
Fig 1- 3: Two extended antiparallel β -sheets fold into a β -sandwich, domain CRD,	,
which binds glycan ligands	27
Fig 1-4: Diagram showing three groups of galectins.	28
Fig 1- 5: Galetin-1 and galectin-3 promote tumor survival pathways through	
mediating the activity of RAS.	32
Fig 1- 6: RAS found in equilibrium between GTP- and GDP-bind forms	38
Fig 1-7: Schematic digram representing the role of APCs in tumor indentification	41
Fig 1-8: Galectin-3 structure.	45
Fig 1-9: Functions of galectin-3 in different sites: cytoplasm, nucleus, cell surface	٠,
and circulation.	47
Fig 1-10: Digram showing the function of galectin-3	47
Fig 1-11: Galectin-3 moderates tumor transformation.	49
Fig 1-12: LGALS-3 secreted by tumor cells	51
Fig 1-13: Different effects of intracellular and extracellular LGALS-3.	53
Fig 1-14: Galectin-9 modulates T-cell selection in the thymus	60
Fig 1-15: Galectin-9/TIM3 ligation result in outgrowth of normal HSCs via activati	ion
of NF-κB and β-catenin	61
Fig 1-16: Galectin-12 function.	63
Fig 3-1: Histogram represents the percentage of galectins in bone marrow of AM patients7	
Fig 3-2: Histogram represents the percentage of galectins in PB of AML patient	80
Fig 3-3 : Relation between expression of <i>LGALS-1</i> and gender (A): Bone marrow, (-
	83
Fig 3-4. Relation between expression of <i>LGALS-1</i> and age (A): Bone marrow, (B):	
Peripheral blood.	84
Fig 3-5: Relation between expression of <i>LGALS-1</i> and diagnosis (A): Bone marrow	V,
	85
Fig 3-6: Relation between expression of <i>LGALS-1</i> and diagnosis (M1+M2)/	•
	86
Fig 3-7: Relation between expression of <i>LGALS-1</i> and CD117 (A): Bone marrow, (I	B):
Peripheral blood.	87

Fig 3-8: Relation between expression of <i>LGALS-1</i> and CD64 (A): Bone marrow, (B):
Peripheral blood88
Fig 3-9 : Relation between expression of <i>LGALS-</i> 1 and CD4 (A): Bone marrow, (B): Peripheral blood. 89
Fig 3-10: Relation between expression of <i>LGALS-1</i> and CD11c (A): Bone marrow,
(B): Peripheral blood90
Fig 3-11: Relation between expression of <i>LGALS-1</i> and CD14 (A): Bone marrow, (B):
Peripheral blood91
Fig 3-12: Relation between expression of LGALS-1 and MHC class II (A): Bone
marrow, (B): Peripheral blood92
Fig 3-13: Relation between expression of <i>LGALS-2</i> and Diagnosis (A): Bone marrow,
(B): Peripheral blood95
Fig 3-14: Relation between expression of <i>LGALS-2</i> and Diagnosis (M1+M2)/
(M4+M5)96
Fig 3-15: Relation between expression of <i>LGALS-2</i> and Cytogenetics (A): Bone
marrow, (B): Peripheral blood97
Fig 3-16: Relation between expression of <i>LGALS-2</i> and CD64 (A): Bone marrow, (B):
Peripheral blood98
Fig 3-17: Relation between the expression of <i>LGALS-2</i> and CD11c (A): Bone
marrow, (B): Peripheral blood99
Fig 3-18: Relation between the expression of <i>LGALS-2</i> and Splenomegaly (A): Bone
marrow, (B): Peripheral blood100
Fig 3-19: Relation between expression of <i>LGALS-3</i> and diagnosis (M1+M2)/
(M4+M5) (A): Bone marrow, (B): Peripheral blood103
Fig 3-20 : Relation between expression of <i>LGALS-</i> 3 and CD11c: Bone marrow, (B):
Peripheral blood104
Fig 3-21: Relation between expression of <i>LGALS-3</i> and splenomegaly (A): Bone
marrow, (B): Peripheral blood105
Fig 3-22: Relation between the expression of <i>LGALS-4</i> and CD117 (A): Bone
marrow, (B): Peripheral blood108
Fig 3-23: Relation between the expression of <i>LGALS-4</i> and CD11c (A): Bone
marrow, (B): Peripheral blood109
Fig 3-24: Relation between the expression of <i>LGALS</i> -4 and MHC class II (A): Bone
marrow, (B): Peripheral blood110
Fig 3-25: Relation between expression of <i>LGALS-8</i> and Hepatomegaly (A): Bone
marrow, (B): Peripheral blood113
Fig 3-26. Relation between expression of <i>LGALS9</i> and Cytogenetics (A): Bone
marrow, (B): Peripheral blood116

Fig 3-27: Relation between expression of <i>LGALS-9</i> and MHC class II (A): Bone	
marrow, (B): Peripheral blood	117
Fig 3-28: Relation between expression of <i>LGALS-12</i> and Diagnosis (A): Bone	
marrow, (B): Peripheral blood	120
Fig 3-29: Relation between expression of <i>LGALS-12</i> and MHC class II (A): Bone	
marrow, (B): Peripheral blood	121
Fig 3-30: Relation between expression of <i>LGALS-13</i> and Diagnosis (A): Bone	
marrow, (B): Peripheral blood	124
Fig 3-31: Relation between expression of LGALS-13 and CD14 (A): Bone marrow	,
(B): Peripheral blood.	125
Fig 3-32: Relation between expression of LGALS-13 and Hepatomegaly (A): Bone	5
marrow, (B): Peripheral blood.	126
Fig 3-33: Overall survival of all AML patients	132
Fig 3-34: Kaplan-Meier cumulative survival analysis for de novo AML with initial	
bone marrow blasts.	136
Fig 3-35: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
presence and absence of MHC class II.	136
Fig 3-36: Kaplan-Meier cumulative survival analysis for de novo AML with and	
without complete remission CR	137
Fig 3- 37: Kaplan-Meier cumulative survival analysis for de novo AML patients w	ith
the expression of <i>LGALS-1</i> (A): Bone marrow, (B): Peripheral blood.	140
Fig 3- 38: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
expression of LGALS-4 (A): Bone marrow, (B): Peripheral blood	141
Fig 3-39: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
expression of <i>LGALS-2</i> (A): Bone marrow, (B): Peripheral blood	142
Fig 3- 40: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
expression of <i>LGALS-3</i> (A): Bone marrow, (B): Peripheral blood	143
Fig 3- 41: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
expression of <i>LGALS-8</i> (A): Bone marrow, (B): Peripheral blood	144
Fig 3- 42: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
expression of <i>LGALS-9</i> (A): Bone marrow, (B): Peripheral blood	145
Fig 3-43: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
expression of <i>LGALS-12</i> (A): Bone marrow, (B): Peripheral blood	146
Fig 3-44: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
expression of LGALS-13 (A): Bone marrow, (B): Peripheral blood	147
Fig 3-45: Disease-free survival (DFS) of all AML patients	148
Fig 3-46: Kaplan-Meier cumulative survival analysis for de novo AML with MH	íС
	152
Fig 3- 47: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with gender.	152

Fig 3-48: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with age.	153
Fig 3-49: Kaplan-Meier cumulative survival analysis for de novo AML with	
Diagnosis.	153
Fig 3- 50: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with Diagnosis.	_154
Fig 3- 51: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with initial bone	
marrow.	154
Fig 3-52: Kaplan-Meier cumulative survival analysis for de novo AML with cytogenetics	
	155
Fig 3- 53: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with FLT3-ITD	155
Fig 3- 54: Kaplan-Meier cumulative survival analysis for de novo AML with FLT3-TKD835	156
Fig 3- 55: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD34	156
Fig 3- 56: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD117	157
Fig 3- 57: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD19	157
Fig 3- 58: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD22	158
Fig 3- 59: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD16	158
Fig 3- 60: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD7	159
Fig 3- 61: Kaplan-Meier cumulative survival analysis for de novo AML with CD56.	159
Fig 3- 62 : Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD64.	160
Fig 3-63: Kaplan-Meier cumulative survival analysis for de novo AML with CD4.	160
Fig 3- 64: Kaplan-Meier cumulative survival analysis for de novo AML with CD8.	161
Fig 3- 65: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD11c.	
Fig 3- 66: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD14	162
Fig 3- 67: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD20.	162
Fig 3- 68: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with CD61	163
Fig 3- 69: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with	
splenomegaly.	163
Fig 3- 70: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with	
hepatomegaly.	164
Fig 3-71: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML patients w	ith
the expression of <i>LGALS-1</i> (A): Bone marrow, (B): Peripheral blood.	167
Fig 3-72: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML patients w	ith
the expression of <i>LGALS-2</i> (A): Bone marrow, (B): Peripheral blood.	
Fig 3-73: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML patients w	
the expression of <i>LGALS-3</i> (A): Bone marrow, (B): Peripheral blood.	
Fig 3-74: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML patients w	
the expression of <i>LGALS-4</i> (A): Bone marrow, (B): Peripheral blood.	
Fig 3-75: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML patients w	
the expression of <i>LGALS-8</i> (A): Bone marrow, (B): Peripheral blood.	171

Fig 3-76: Kaplan-Meier cumulative survival analysis for de novo AML patients w	ith
the expression of LGALS-9 (A): Bone marrow, (B): Peripheral blood.	172
Fig 3-77: Kaplan-Meier cumulative survival analysis for de novo AML patients w	ith
the expression of LGALS-12 (A): Bone marrow, (B): Peripheral blood.	173
Fig 3-78: Kaplan-Meier cumulative survival analysis for de novo AML patients w	ith
the expression of LGALS-13 (A): Bone marrow, (B): Peripheral blood.	174
Fig 3-79: The expression ratio of galectins in PB/BM.	179
Fig 3-80: Ratio of the expression pattern of LGALS-1 in PB/BM and FLT3 (ITD)	181
Fig 3-81: Ratio of the expression pattern of LGALS-2 in PB/BM and CD117.	181
Fig 3-82: Ratio of the expression pattern of LGALS-4 in PB/BM and CD117.	182
Fig 3-83: Ratio of the expression pattern of LGALS-8 in PB/BM and CD117.	182
Fig 3-84: Ratio of the expression pattern of LGALS-2 in PB/BM and CD19.	183
Fig 3-85: Ratio of the expression pattern of LGALS-4 in PB/BM and CD19.	183
Fig 3-87: Ratio of the expression pattern of LGALS-8 in PB/BM and CD4	184
Fig 3-88: Ratio of the expression pattern of LGALS-3 in PB/BM and CD14.	185
Fig 3-89: Ratio of the expression pattern of LGALS-13 in PB/BM and CD14.	185
Fig 3-90: Ratio of the expression pattern of LGALS-9 in PB/BM and MHC class II.	186
Fig 3-91: Ratio of the expression pattern of LGALS-12 in PB/BM and MHC class II.	186
Fig 3- 92: Kaplan-Meier cumulative survival analysis for de novo AML with the re	atio
of LGALS-1expression PB/BM.	188
Fig 3-93: Kaplan-Meier cumulative survival analysis for de novo AML with the ra	itio
of LGALS-2 expression PB/BM	188
Fig 3-94: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
ratio of LGALS-3 expression PB/BM	189
Fig 3-95: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
ratio of LGALS-4 expression PB/BM	189
Fig 3-96: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
ratio of LGALS-8 expression PB/BM	190
Fig 3-97: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
ratio of LGALS-9 expression PB/BM	190
Fig 3-98: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
ratio of LGALS-12 expression PB/BM	191
Fig 3-99: Kaplan-Meier cumulative survival analysis for <i>de novo</i> AML with the	
ratio of LGALS-13 expression PB/BM	191

List of tables

Table 1-1: French-American-British classification system (FAB).	_17
Table 1-2: WHO classification of acute myeloid leukemia.	_18
Table 1-3: The European Leukemia Net (ELN) classification.	_20
Table 2-1: Clinicolaboratory data of the studied group (n=45).	-66
Table 2-2: Immunophenotyping (IPT) of AML patients.	_67
Table 2-3: Reverse transcriptase (RT-PCR) master mix.	_70
Table 2-4: Thermal cycler.	_70
Table 2-5: list of sequences of human gene-specific primers.	_72
Table 3-1: Galectins expression in bone marrow of AML patients.	-77
Table 3-2: Galectins expression in peripheral blood of AML patients.	_ 78
Table 3-3: Relation of the expression pattern of LGALS-1 with clinicolaboratory	
data in BM and PB of AML patients.	_82
Table 3-4: Relation of the expression pattern of LGALS-2 with clinicolaboratory	
data in BM and PB of AML patients.	_94
Table 3-5: Relation of the expression pattern of LGALS-3 with clinicolaboratory	
data in BM and PB of AML patients.	102
Table 3-6 : Relation of the expression pattern of LGALS-4 with clinicolaboratory	data
in BM and PB of AML patients.	106
Table 3-7 : Relation of the expression pattern of LGALS-8 with clinicolaboratory	
data in BM and PB of AML patients.	111
Table 3-8 : Relation of the expression pattern of LGALS-9 with clinicolaboratory	
data in BM and PB of AML patients.	114
Table 3-9: Relation of the expression pattern of LGALS-12 with clinicolaboratory	/
data in BM and PB of AML patients.	118
Table 3-10: Relation of the expression pattern of LGALS-13 with clinicolaborato	ry
data in BM and PB of AML patients.	122
Table 3-11: The relation between clinicolaboratory data of AML patients and th	e
response to chemotherapy	128
Table 3-12: The relation between galectin expression profiling and response to	
chemotherapy.	130
Table 3- 13: Relation of overall survival (OS) and clinicolaboratory data of the	
studied group.	133
Table 3- 14: Relation of overall survival and galectins expression.	138
Table 3-15: Relation of disease-free survival (DFS) and clinical laboratory data o	f
the studied group.	149

Table 3-16: Relation of disease-free survival (DFS) and galectin expression of	
AML patients.	165
Table 3-17: Showing Spearman's correlation.	176
Table 3-18: Ratio of the expression pattern between PB/BM and the	
clinicopathological data	180
Table 3-19: Relation of overall survival (OS) and expression pattern of the ratio	
between peripheral blood/bone marrow.	187

Abstract

Introduction:

Acute myeloid leukemia (AML) is a malignant hematopoietic disease characterized by an overproduction of immature myeloid cells, (myeloblasts) in the bone marrow in which precursors of blood cells are blocked in an early stage of maturation. AML is a disease of older adults with median range 68 years. Galectins family are animal lectins which affect a wide range of cellular functions. Many galectins are repeatedly reported in several physiological changes and diseases including cancer. In AML, there is a big focus on galectins-3 and -9, but not the other galectins.

Patients and Methods: Bone marrow (BM) and corresponding Peripheral blood (PB) were collected from recently diagnosed 45 adult patients with *de novo* acute myeloid leukemia, present in National Cancer Institute (NCI), Cairo University (CU). Our study was carried out to investigate the regulation of galectins expression in the bone marrow and corresponding peripheral blood samples of AML diagnosed patients and correlating them to clinicopathological data.

Results: Our results discuss the dysregulation of several galectins in AML patients. Upregulation of galectin-1 has shown a significant correlation to monocytic AML, as it was more upregulated in M4 and M5 (p=0.006 and p=0.015 in bone marrow and peripheral blood respectively), as well as positive CD4, CD11c, and CD64. The same finding was encountered with galectin-2 where its overexpression was also a sign of monocytic AML. The other galectins are statistically significant with many clinicopathological features indicating their clinical significance correlation to monocytic AML. Galectin-3 is almost downregulated in opposite way to the previous studies. The expression of MHC class II is significantly associated with overall survival (OS) advantage (p<0.001).

Conclusion: Galectin-1 and -2 could be used as markers for monocytic AML. MHC class II could be a good prognostic factor.

Keywords: galectins/AML/bone marrow/peripheral blood/ qRT-PCR.