

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		00	ملاحظات:
		حامعتب		
	since	1992	1.53	

بركات وتكنولوجياراه

Association of Glutathione S-Transferase P1 (GSTP1) Gene Polymorphism with the Response to Platinum Based Chemotherapy in Patients with Non-Small Cell Lung Cancer

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

 $\mathcal{B}y$

Martina Nabil Georges Makar

M.B., B.Ch. Ain Shams University

Under Supervision of

Prof. Abeer Ibrahim Abd El-Mageed

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Assist. Prof. Noha Refaat Mohamed

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain shams University

Assist. Prof. Walaa Ahmed Yousry

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain shams University

Dr. Ahmed Ali Nagy

Lecturer of Clinical Oncology and Nuclear Medicine Faculty of Medicine - Ain shams University

Faculty of Medicine, Ain Shams University 2022

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

It has been a great honor to proceed into this work under the supervision of **Prof.** Abeer Ibrahim Abd el-Mageed. Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University. I would like to express my endless gratitude and deepest appreciation for her continuous guidance, valuable suggestion, encouragement and keen supervision throughout the work.

Indeed, words do fail to express my special thanks and appreciation to **Dr. Moha Refaat Mohamed**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University. I will never forget her unlimited help, scientific criticism and wise guidance. To her, words of praise are not sufficient.

Special thanks are due to **Dr. Walaa Ahmed Yousry**, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, who offered much of her time and advice for reading and supervising this work and also for her patience, encouragement, continuous support, creative suggestion and useful criticism.

A lot of appreciation for **Dr. Ahmed Ali Magy**, Lecturer of Clinical Oncology and nuclear medicine Faculty of Medicine, Ain Shams University, for his sincere effort and fruitful knowledge regarding the cases.

Finally, all thanks and gratitude goes to my husband and my family, for pushing me forward in every single step and for always believing in me.

Martina N. G. Makar

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Tables	v
List of Figures	vii
Introduction	1
Aim of the Work	4
Lung Cancer	5
A) Epidemiology:	5
B) Risk Factors of Lung Cancer:	5
C) Histopathological Classification of Lung Cancer:	16
D) Staging of lung Cancer:	18
E) Diagnosis of lung Cancer:	20
F) Prognosis of Lung Cancer:	29
G) Prevention of Lung Cancer:	31
H) Management of lung Cancer:	31
Glutathione-S-Transferase P1 (GSTP1) Gene Polymorph	hism 37
A. Structure of Glutathione S Transferase P1 gene:	37
B. Regulation of GSTP1 gene Expression:	37
C. Glutathione S Transferase P1 Enzyme:	38
D. GSTP1 Single Nucleotide Polymorphism (SNP):	44
E. Diseases Associated with GSTP1 Gene Polymorphism	ı: 47
F. Methods of Assay of GSTP1 Gene Polymorphism:	49
Subjects and Methods	57
Results	75
Discussion	85
Summary	92
Recommendations	94
References	95
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
AICC	American Joint Committee on Canaar
	American Joint Committee on Cancer
	Anaplastic lymphoma kinase Alanine aminotransferase
	Activator protein-1
	Apoptosis signal-regulating kinase
	Aspartate aminotransferase
	Base-excision repair
	Chlamydia pneumoniae
	Cancer antigen 125
	Complete blood count
	Carcinoembryonic antigen
	Chronic obstructive pulmonary disease
	Complete response
	Computed Tomography
	P-oxidases cytochrome
CYP1A1	
	Deoxyribonicleic acid
	Deoxyribonucleotide triphosphate
E2F	
EGF	Epidermal growth factor
EGFR	Epidermal growth factor receptor
EIA	Enzyme immunoassay
ELSA	Enzyme-linked immunosorbent
ERBB2	Erb-B2 receptor tyrosine kinase 2
FISH	Fluorescence in situ hybridization
GLDH	Glutamate dehydrogenase
GLOBOCAN	Global cancer observatory
GSH	Glutathione
GSR	Glutathione reductase
	Oxidized glutathione
	Glutathione S-transferase p1
	Glutathione S-transferases
HER2	Human epidermal growth factor receptor 2

Tist of Abbreviations cont...

Abb.	Full term
HS	Highly significant
	International Federation for Clinical
	Chemistry
IHC	Immunohistochemistry
	C-Jun N-terminal kinase
k3 EDTA	Tri-potassium ethylene diamine tetra acetate
	Kirsten rat sarcoma
LD	Lactate dehydrogenase
Let-7	· · ·
MALDI	Matrix-assisted laser desorption ionization
	Membrane-associated proteins in eicosanoid
	and glutathione
MAPK	Mitogen-activated protein kinase
MBD2	Methyl-CpG-binding domain
MDH	Malate dehydrogenase
MET	Mesenchymal–epithelial transition
MGB	Minor groove binder
MiR	OncomiRs
MiRNAs	MicroRNA
MMR	Mismatch repair
MRI	Magnetic resonance imaging
mRNA	
	Mann– Whitney–Wilcoxon
N	Number
	Nicotatinamide adenine dinucleotide
	N-acetyl-transferase
NER	Nucleotide-excision repair
_	Non-fluorescent quencher
	Next-generation sequencing
NS	
	Non-small cell lung cancer
	Neuron-specific enolase
P5P	Pyridoxal-5'-phosphate

Tist of Abbreviations cont...

Abb.	Full term
DAIL	D.1. 1: 1: 1
	Polycyclic aromatic hydrocarbons
	Serine/threonine-protein kinase1
	Polymerase chain reaction
	Progressive disease
	Programmed death ligand 1
PET-CT	Positron-emission tomography-computed
D7077	tomography
	Phosphatidylinositol 3-Kinase
PKC	
PPi	
PR	
Prdx6	
	Progastrin-releasing peptide
	Phosphatase and tensin homolog
P-value	
RECIST	Response Evaluation Criteria In Solid
	Tumours
	Rearranged during transfection
RFLP	Restriction Fragment Length Polymorphism
RIA	Radioimmunoassay
RNA	Ribonucleic acid
RNS	Reactive nitrogen species
ROS	Reactive oxygen species
ROS1	C-ROS oncogene 1
RS	Thiol radical
RTK	Receptor tyrosine kinases
	Real-time polymerase chain reaction
S	Significant
SBL	Sequencing by ligation
SBS	Sequencing by synthesis
	Squamous cell lung cancer
	Squamous cell carcinoma antigen
	Small cell lung cancer

Tist of Abbreviations cont...

Abb.	Full term
SD	Stable disease
	Standard deviation
	Single nucleotide polymorphisms
	Statistical package of social science
	Sulfotransferases
TB	
	TGF-β-receptor II
	Transforming growth factor-β
<u>-</u>	Carcinoma insitu
Tm	Melting temperature
TNFα	Tumor necrosis factor α
TNM	Tumor, Node, Metastasis
TP53	Tumour protein 53
TRAF2	Tumor necrosis factor receptor-associated
	factor 2
TSP-1	Thrombospondin-1
UGT	UDP-glucuronosyltransferases
UICC	Union for International Cancer Control
UV	Ultraviolet
Val	Valine
VEGF-A	Vascular endothelial growth factor
VEGFR	Vascular endothelial growth factor receptor
WB	Wash Buffer
WHO	World Health Organization
X2	Chi square test

Tist of Tables

Table No.	Title	Page No.
Table 1:	Classification of the Main T Cancers Following WHO Criteri	
Table 2:	T, N, and M Descriptors for the of TNM Classification for Lung	· ·
Table 3:	Overall survival by stage accortumour-node-metastasis (TNM)	•
Table 4:	RECIST 1.1 Definitions Classification	-
Table 5:	Single nucleotide polymorphi	
Table 6:	The PCR Reaction Mix	69
Table 7:	Thermal Cycling Program of Re	al Time PCR70
Table 8:	Relation between fluorosence sequences in a sample	_
Table 9:	Descriptive statistics of demogresponders' and non-responders	=
Table 10:	Descriptive statistics of rout parameters for responders responders' groups	' and non-
Table 11:	Comparative statistics of den between responders' and a groups using chi-square test data and student's t-test for par	non-responders' for qualitative
Table 12:	Comparative statistics of rout parameters between responder responders' groups using stud parametric data and mann-win non parametric data:	ers' and non- ent's t-test for hitney test for

Tist of Tables cont...

Table No.	Title	Page No.
Table 13:	Descriptive and comparative static responders' and non-responder regarding genotypic frequencies Rs1695 (A/G) polymorphism using test:	ers' groups s of GSTP1 ng chi-square
Table 14:	Descriptive and comparative static responders' and non-responder regarding The GSTP1 Rs1695 frequencies using chi-square test:	ers' groups (A/G) allele
Table 15:	Descriptive and comparative statidifferent GSTP1 Rs1695 (A/O polymorphism groups regarding data using chi-square test for quand ANOVA test for parametric d	G) genotypic demographic alitative data
Table 16:	Descriptive and comparative statidifferent GSTP1 Rs1695 (A/O polymorphism groups regard laboratory parameters using known test for non parametric data and for parametric data:	G) genotypic ing routine ruskal wallis ANOVA test

List of Figures

Fig. No.	Title	Page No.
Figure 1:	Etiological factors of lung cance	r16
Figure 2:	Molecular diagnosis of NSCLC .	28
Figure 3:	Structure of glutathione transfe	rase P1enzyme39
Figure 4:	Involvement of GSTP1 in the exogenous and endogenous subs	
Figure 5:	Ligand-binding properties of JN	K and TRAF244
Figure 6:	Basic principle of next generatechnologies	- •
Figure 7:	DTlite Real-Time PCR System .	70
Figure 8:	Illustration of the principle of PCR allelic discrimination the fluorescence emission	rough different
Figure 9:	Genotypic frequencies of GSTI polymorphism among respon responders' groups	ders' and non
Figure 10:	Allelic frequencies of GSTP1 and and non responders' groups	· -

Introduction

orldwide, lung cancer has a high prevalence and is associated with a high mortality rate. In the last century, the incidence of lung cancer has been rising rapidly and about 2.09 million deaths of lung cancer were estimated in 2018 according to World Health Organization (WHO) (Wang et al., *2018*).

The main two types of lung cancer are small cell lung cancer and non-small cell lung cancer. Non-small cell lung cancer (NSCLC) is diagnosed in up to 85% of all cases. It is classified into three subtypes: squamous cell carcinoma, adenocarcinoma, and large cell carcinoma. In accordance with the American Joint Committee on Cancer (AJCC), the majority of the patients are cataloged as advanced stage (IIIB-IV) at the time of diagnosis (Ramírez et al., 2019).

Despite multiple advances in therapeutic options over years, platinum based chemotherapy remains the mainstay of adjuvant or first line chemotherapy in NSCLC treatment. Cisplatin-based chemotherapy is slightly superior in terms of response rate and in prolonging the survival without being associated with an increase in severe toxic effects (Lin et al., 2018).

The principal mechanism of action of platinum compounds is the formation of DNA-platinum adducts and subsequently creations of intrastrand or interstrand cross links with DNA which

may cause alteration in the structure of DNA. These phenomena generally lead to apoptosis of cancer cells (*Mlak et al.*, 2013).

Glutathione S-transferases (GSTs) are phase II detoxifying enzymes involved in the maintenance of cell integrity, oxidative stress and protection against DNA damage by catalyzing the conjugation of glutathione to a wide variety of electrophilic substrates (Sun et al., 2010).

The 17 human cytosolic GST subunits are classified as seven gene families according to their biochemical characteristics and amino acid sequence similarities: (GSTA), (GSTM), (GSTT), (GSTP), (GSTO), (GSTZ), and (GSTS). Glutathione S transferase p1 enzyme is the most abundant subunit in lung and brain. It is widely expressed in different human epithelial tissue and is directly involved in the detoxification of cisplatin via the formation of cisplatin-glutathione adducts, which indicates that GSTP1 may play a role in the acquisition of resistance to platinum compound. Glutathione S transferase p1 enzyme is encoded by GSTP1 gene which is located on 11q13.2 (*Li et al.*, 2019).

Patients' response to treatment is determined after 2-3 cycles according to the Response Evaluation Criteria In Solid Tumours (RECIST). In order to analyze the response to chemotherapy, patients are classified into responders and non responders.

The responders include: patients with complete response (CR): (disappearance of all target lesions) and patients with

partial response (PR): (more than or equal 30% decrease of all target lesions).

The non-responders include: patients with progressive disease (PD): (more than or equal 20% increase from smallest sum of diameters recorded and 5mm absolute increase over lowest sum) and patients with stable disease (SD): neither sufficient shrinkage to qualify for PR nor sufficient increase to qualify for PD (Zhou et al., 2011; Chen et al., 2016).

AIM OF THE WORK

The aim of the present study was to investigate the association of GSTP1 gene polymorphism with the response to platinum based chemotherapy in patients with NSCLC in order to prevent the non-necessary exposure to the toxic effect of chemotherapy.