

بسم الله الرحمن الرحيم

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

ملاحظات

بركات وتكنولوجيا

ASSESSMENT OF SERUM VIMENTIN LEVEL IN ADULT EGYPTIAN ACUTE LYMPHOBLASTIC LEUKEMIA (ALL) PATIENTS AND EVALUATION OF ITS PROGNOSTIC VALUE

Thesis

Submitted for partial fulfillment of M. D degree in Internal Medicine

Presented by

Reham Ali El-Metwally

(M. B., B. Ch) M. Sc, (Internal Medicine)
Supervised by

Prof. Dr. Mohamed Osman Azzazi

Professor of Internal Medicine and Haematology Faculty of Medicine, Ain Shams University

Prof. Dr. Mohamed Mahmoud Moussa

Professor of Internal Medicine and Haematology Faculty of Medicine, Ain Shams University

Assistant Prof. Dr. Amro Mohamed Sedky El-Ghammaz

Assistant Professor of Internal Medicine and Haematology Faculty of Medicine, Ain Shams University

Assistant Prof. Dr. Haydi Sayed Mohamed

Assistant Professor of Internal Medicine and Haematology Faculty of Medicine, Ain Shams University

Assistant Prof. Dr. Mary Gamal Naguib

Assistant Professor of Internal Medicine and Haematology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2022

تقييم مستوى فيمنتين في مرضى اللوكيميا الليمفاوية الحادة المصريين البالغين و أهميته النذرية

رسالة

توطئة للحصول على درجة الدكتوراة في الباطنة العامة مقدمة من

الطبيبة/ ريهام على المتولى

بكالوريوس الطب و الجراحة- ماجستير الباطنة العامة تحت إشراف

أ. د/ محمد عثمان عزازي

أستاذ الباطنة العامة و امراض الدم الاكلينيكية كلية الطب- جامعة عين شمس

أ. د/ محمد محمود موسى

أستاذ الباطنة العامة و امراض الدم الاكلينيكية كلية الطب- جامعة عين شمس

أ. د. م/ عمرو محمد صدقي الغماز

أستاذ مساعد الباطنة العامة و امراض الدم الاكلينيكية كلية الطب- جامعة عين شمس

أ. د . م /هایدی محمد سید

أستاذ مساعد الباطنة العامة و امراض الدم الاكلينيكية كلية الطب- جامعة عين شمس

أ. د. م/ مارى جمال نجيب

أستاذ مساعد الباطنة العامة و امراض الدم الاكلينيكية كلية الطب- جامعة عين شمس كلية الطب كلية الطب جامعة عين شمس جامعة عين شمس ٢٠٢٢

سورة البقرة الآية: ٣٢

First and foremost thanks to ALLAH, the Most Merciful.

I wish to express my deep appreciation and sincere gratitude to **Prof. Dr. Mohamed Osman Azzazi**, Professor of Internal Medicine and Haematology, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience, advices and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his direct supervision.

I wish to express my great thanks and gratitude to **Prof. Dr. Mohamed Mahmoud Moussa,** Professor of Internal Medicine and Haematology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to Assistant Prof. Dr. Amro Mohamed Sedky El-Ghammaz, Assistant Professor of Internal Medicine and Haematology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to Assistant Prof. Dr. Haydi Sayed Mohamed, Assistant Professor of Internal Medicine and Haematology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

I wish to express my great thanks and gratitude to Assistant Prof. Dr. Mary Gamal Naguib, Assistant Professor of Internal Medicine and Haematology, Ain Shams University, for her kind supervision, indispensable advice and great help in this work.

Last and not least, I want to thank all my family, my colleagues,, for their valuable help and support.

Finally I would present all my appreciations to my patients without them, this work could not have been completed.

CONTENTS

Ti	l'itle		Page
•	List of Abb	oreviations	I
•	List of Tab	le	III
•	List of Figu	ıres	IIV
•	Introduction		1
•	Aim of the	work	3
•	Review of literature		
	Chapter (1):	Acute lymphoblastic leukemia	4
	Chapter (2):	Vimentin	42
	Chapter (3):	Vimentin in hematological malignancies	67
•	Patients a	nd methods	71
•	Results	•••••	77
•	Discussion	1	86
•	Summary.	••••••	91
•	Conclusion	n and Recommendations	93
•	Reference	S	94
•	ملخص العربي	J	_

LIST OF ABBREVIATIONS

Abb.	Full term
6MP	6-mercaptopurine
ABL 1	Abelson kinase gene
ALL	Acute lymphoblastic leukemia
AlloHCT	Allogeneic hematopoietic cell transplantation
AML	Acute myeloid leukemia
ANOVA	Analysis of variance
AYA	Adolescents and young adults
BCP-ALL	B-cell precursor acute lymphoblastic leukemia
BCR	Breakpoint cluster region
BFGF	Basic fibroblast growth factor
CAR	Chimeric antigen receptor
CBC	Complete blood picture
CLL	Chronic lymphocytic leukemia
CN-AML	Cytogenetically normal AML
CNS	Central nervous system
CR	Complete remission
CTC	Circulating tumor cells
DFS	Disease free survival
DLBCL	Diffuse large B cell lymphoma
DLI	Donor lymphocyte infusion
ECM	Extracellular matrix
EFS	Event free survival
ELISA	Enzyme-linked immune sorbent assay
EMT	Epithelial-mesenchymal transition
ETP-ALL	Early T-cell precursor ALL
FISH	Fluorescence In Situ Hybridization
GVHD	Graft-versus-host disease
HCV	Hepatits C virus
HO-1	Heme oxygenase-1
HR	High risk
HSM	Hepatosplenomegaly
iAMP21	Intrachromosomal amplification of chromosome 21
IF	Intermediate filament

ı

€ List of Abbreviations

Abb.	Full term	
IL7Ra	Interleukin-7 receptor a chain	
IT	Intrathecal chemotherapy	
JALSP	Japan Adult Leukemia Study Group	
LALA	Leucémie Aiguës Lymphoblastique de l'Adulte	
MFC	Multi-channel flow cytometry	
molCR	Molecular complete remission	
MRD	Minimal residual disease	
MT1-MMP	Membrane type-1 matrix metalloproteinases	
MTX	Methotrexate	
MUD	Matched unrelated donor	
Non-APL	Non-acute promyelocytic leukemia	
OS	Overall survival	
P1f	Plectin isoform 1f	
PCR	Polymerase chain reaction	
Ph	Philadelphia	
PTM	Posttranslational modifications	
R/R	Relapsed/refractory	
RS	Reed-Sternberg	
S1P	Sphingosine-1-phosphate	
Scvf	Single-chain variant fragment	
SD	Standard deviation	
SR	Standard risk	
TBI	Total body irradiation	
TKIs	Tyrosine kinase inhibitors	
TLS	Tumor lysis syndrome	
TRM	Transplant-related mortality	
TSLPR	Thymic stromal-derived lymphopoietin receptor	
TTT	Time from diagnosis to initial treatment	
ULF	Unit-length filament	
VEGF	Vascular endothelial growth factor	
VIM	Vimentin	
VM	Viral markers	
WBC	White blood cell	
WHO	World health organization	
WSS	Wall shear stress	

LIST OF TABLE

Table No	Subjects	Page
Table (1):	Morphological characteristics of blasts cells in acute lymphoblastic leukemia versus acute	
	myeloid leukemia.	7
Table (2):	Common chromosomal and molecular abnormalities in ALL	10
Table (3):	High-risk factors in adult ALL.	21
Table (4):	GRAALL protocol	27
Table (5):	Low-intensity protocols for unfit patients with ALL	31
Table (6):	Indications for HCT in adult patients with ALL	40
Table (7):	Baseline clinical characteristics of ALL patients and controls, followup data and treatment outcome of cases.	77
Table (8):	Comparison between patients and controls according to their vimentin level	80
Table (9):	Relation between vimentin and studied parameters of patients	81
Table (10):	Correlation between vimentin and studied parameters	81
Table (11):	Comparison between low vimentin and high vimentin expression groups regarding clinical characteristics and outcome	
Table (12):	Kaplan-Meier survival analysis for the relation between vimentin and overall survival (months) among the studied patients	84
Table (13):	Kaplan-Meier survival analysis for the relation between vimentin and disease free survival (months) among the studied patients	85

LIST OF FIGURES

Figure No	Subjects	Page
Figure (1):	Hyper CVAD protocol	25
Figure (2):	CALGB protocol	26
Figure (3):	Immunotherapy in acute lymphoblastic	
	leukemia.	37
Figure (4):	Showing approach to relapsed ALL patient	38
Figure (5):	Vimentin structure	47
Figure (6):	Vimentin location	50
Figure (7):	Examples of how the vimentin protein control	
	cells	58
Figure (8):	Vimentin modulates the migration, invasion,	
	and adhesion of tumor cells	62
Figure (9):	Vimentin exerts regulatory effects on	
	angiogenesis	64
Figure (10):	Comparison between patients and controls	
	according to their vimentin level	80
Figure (11):	Correlation between vimentin and WBC	82
Figure (12):	Kaplan meier curve of overall survival	
	according to vimentin expression	84
Figure (13):	Kaplan Meier curve of disease free survival	
	according to vimentin expression	85

INTRODUCTION

Vimentin (VIM), a major component of type III intermediate filament (IF) protein, is encoded by the VIM gene and is expressed in endothelial and other mesenchymal cells (*Ivaska et al.*, 2007). VIM is instrumental in vital physiological and pathological processes, such as adhesion, migration, cell signaling, inflammation, neurite extension, and vascularization (*Kidd et al.*, 2014).

Though VIM is a cytoskeletal protein, it has been shown to be involved in apoptotic progression. During apoptosis, VIM is cleaved by caspase-3, -7 and -6 resulting in cytoskeletal collapse and is thought to be the basis of the morphological changes that occur in a cell undergoing apoptosis. (*Zhang et al.*, 2006)

Increased VIM expression has been found in various epithelial tumors including lung cancer, hepatocellular carcinoma, breast cancer, gastrointestinal tumors, central nervous system tumors, malignant melanoma, and hematopoietic malignances, which may be concerned with tumor growth and invasion resulting into poor prognosis (Satelli and Li, 2011).

In solid cancers, VIM has been shown to promote metastatic progression by participating in the cytoskeletal reorganization that occurs during epithelial mesenchymal transition (EMT) as well as regulate pro-EMT signaling pathways. VIM has also been used as a marker for premetastatic cells undergoing EMT and therefore, high VIM expression is associated with worse outcomes in patients with solid cancers. The role of VIM in haematological malignancies is not clear, particularly acute lymphoblastic leukemia (ALL), its role wasn't assessed before. (Wu et al., 2018)

ALL is a hematologic malignancy propagated by impaired differentiation, proliferation, and accumulation of lymphoid progenitor cells in the bone marrow and/or extramedullary sites. Although ALL occurs predominantly in children, it is adult ALL that is more challenging to treat. Despite high rates of complete remission (CR) (80%-90%) in adult ALL, the cure rates are only 40% to 50% because of relapses. (*Paul et al., 2016*) With such high mortality rates, a better understanding of the cellular and molecular mechanisms regulating leukemia cells are required.

AIM OF THE WORK

This study aimed at measurement of serum vimentin level in the peripheral blood of Egyptian patients with acute lymphoblastic leukemia and correlating it with clinical outcome and prognosis of the disease.

ACUTE LYMPHOBLASTIC LEUKEMIA

Acute lymphoblastic leukemia (ALL) is a hematologic malignancy driven by the proliferation and accumulation of lymphoid progenitor cells in the bone marrow and other tissues. While 80% of ALL occurs in children, it represents a devastating disease when it occurs in adults. It occurs in a bimodal distribution with an overall age-adjusted incidence of 1. 7 per 100,000 persons; it affects 4 to 5 children per 100,000 and half that number around the fifth decade of life. Roughly, 60% of cases are diagnosed in patients younger than 20 years. While dose-intensification strategies have led to a significant improvement in outcomes for pediatric patients, the prognosis for the elderly remains very poor. Despite a high rate of response to induction chemotherapy, only 30–40% of adult patients with ALL will achieve long-term remission. (*Jabbour et al.*, 2015)

Etiology

The etiology of ALL is largely unknown. Less than 5% of cases can be attributed to genetic syndromes such as Down syndrome, Klinefelter syndrome, Fanconi anemia, Bloom syndrome, ataxia-telangiectasia, and Nijmegen breakdown syndrome. Other risk factors include increasing age (>70 years) and radiation exposure. There has also been an association between Epstein-Barr virus in mature B-cell ALL, human T-lymphotropic virus type 1 in adult T-cell leukemia/lymphoma, and human immunodeficiency virus in lymphoproliferative disorders. (*Paul et al.*, 2016)

Clinical presentation

Most of the clinical manifestations of ALL reflect the accumulation of malignant, poorly differentiated lymphoid cells within the bone marrow, peripheral blood, and, extramedullary sites. The presentation can be nonspecific, with a combination of constitutional symptoms and signs of bone marrow failure (anemia, thrombocytopenia, and leukopenia). Common symptoms include B symptoms (fever, weight loss, night sweats), easy bleeding or bruising, fatigue, dyspnea, and infection. Involvement of extramedullary sites commonly occurs and can cause lymphadenopathy, splenomegaly, or hepatomegaly in 20% of patients. Central nervous system (CNS) involvement at the time of diagnosis occurs in 5-8% of patients and presents most commonly as cranial nerve deficits or meningism. T-cell ALL also may present with mediastinal mass. (Terwilliger and Abdul-Hay, 2017).

Diagnosis

Diagnosis is established by the presence of 20% or more lymphoblasts in the bone marrow or peripheral blood. Evaluation for morphology, flow cytometry, Immunophenotyping, and cytogenetic testing is valuable both for confirming the diagnosis and risk stratification. Lumbar puncture with CSF analysis is standard of care at the time of diagnosis to evaluate for CNS involvement. If the CNS is involved, a brain MRI should be performed.