

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		\$	ملاحظات:
		حامعتهت		
	since	1992	1.53	

بركات وتكنولوجياراه

Headache among Patients with Epilepsy

Thesis

Submitted for Partial Fulfillment of Master's Degree in **Neuropsychiatry**

By

Abd El Rahman Osama Fahmi

M.B.B.Ch, Faculty of Medicine – Misr University for Science & Technology (MUST)

Under Supervision of

Prof. Mahmoud Hemeda Elrakawy

Professor of Neurology Faculty of Medicine, Ain Shams University

Prof. Naglaa Mohamed El Khayat

Professor of Neurology Faculty of Medicine, Ain Shams University

Prof. Ayman Abdallah El-Azzouny

Professor of Neurology
Faculty of Medicine, Misr University for Science &
Technology (MUST)

Faculty of Medicine, Ain Shams University
2022

سورة البقرة الآية: ٣٢

Acknowledgments

First and foremost, I feel always indebted to **Allah** the Most Beneficent and Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Mahmoud Hemeda**Cleakawy, Professor of Neurology Faculty of Medicine –Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Prof. Maglaa Mohamed**El Khayat, Professor of Neurology at Ain Shams

University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Prof.** Ayman Abdallah El-Azzouny, Lecturer of Neurology Faculty of Medicine –Misr University for Science and Technology, for his great help, active participation and guidance.

Abd El Rahman Osama Fahmi

Tist of Contents

Title	Page No.
List of Abbreviations	i
List of Figures	ii
List of Tables	iv
Introduction	1
Aim of the Work	5
Review of Literature	
Chapter 1: Epilepsy	6
Chapter 2: Primary Headaches	23
Chapter 3: Headaches and their Relationship Seizures	
Subject and Methods	57
Results	61
Discussion	83
Conclusion	86
Recommendations	88
Summary	89
References	92
Appendix	102
Arabic Summary	

Tist of Abbreviations

Abb.	Full term
AED	Antiepileptic Drug
	Chronic migraine
	Cranial nerves
	Cortical Spreading Depression
	Computerized tomography
	Electroencephalography
	Episodic migraine
	Erythrocyte sedimentation rate
	Focal aware seizures
	Focal to bilateral tonic-clonic seizures
	Food and Drug Administration
	Familial Hemiplegic Migraine
	Focal impaired awareness seizures
	Functional Magnetic resonance imaging
	Glasgow Coma Scale
	Generalized tonic-clonic
	International Classification Headache
	Disorders-III
<i>IHS</i>	International Headache Society
	International League Against Epilepsy
<i>IQR</i>	Interquartile range
MRI	Magnetic resonance imaging
<i>MWA</i>	Migraine with aura
<i>OSA</i>	Obstructive sleep apnea
peri-IH	Peri-Ictal headache
	Positron emission tomography
post-IH	Post-Ictal headache
pre-IH	Pre-Ictal headache
<i>PWE</i>	Patients with epilepsy
TACs	Trigeminal Autonomic Cephalalgias
<i>TIA</i>	Transient ischaemic attack
<i>TTH</i>	Tension-type headache

List of Figures

Fig. No.	Title	Page No.
Figure 1:	ILAE 2017 classification of seizur expanded version	· -
Figure 2:	ILAE classification of the epilepsies.	16
Figure 3:	Diagnostic criteria of migraine aura.	without
Figure 4:	Diagnostic criteria of migraine with a	aura28
Figure 5:	Diagnostic criteria of cluster headach	ne39
Figure 6:	Classification of Tension-Type Heada	ache41
Figure 7:	Diagnostic criteria of Tensi Headache	
Figure 8:	Diagnostic criteria of headache attribepileptic seizure	
Figure 9:	Diagnostic criteria of Pre-ictal heada	.che48
Figure 10:	Diagnostic criteria of ictal e	
Figure 11:	Diagnostic criteria of post-ictal heada	ache55
Figure 12:	Gender distribution of the studied pa	atients62
Figure 13:	Seizure Onset type	65
Figure 14:	Epilepsy Etiology	65
Figure 15:	Temporal relation of headache to sei	zure66
Figure 16:	Headache Type	66
Figure 17:	EEG	67
Figure 18:	Comparison between generalized as seizure onset among epilepsy etiology	

Tist of Figures cont...

Fig. No.	Title	Page No.
Figure 19:	Comparison between generalized a seizure onset among temporal reheadache to seizure.	lation of
Figure 20:	Comparison between generalized a seizure onset in relation to age of on	
Figure 21:	Comparison between generalized a seizure onset among headache (Migraine, Tension-type & cluster)	e types
Figure 22:	Comparison between generalized a seizure onset in relation to EEG (N Abnormal).	ormal vs
Figure 23:	Comparison between headache (Migraine vs Tension-type) am relation to epilepsy's age of onse studied patients	nong in t in the
Figure 24:	Comparison between Peri-Ictal hamong generalized and focal seizure	
Figure 25:	Comparison between Post-Ictal hamong generalized and focal seizure	
Figure 26:	Comparison between EEG find generalized and focal seizure onset.	-

Tist of Tables

Table No	o. Title	Page No.
Table 1:	Shows the classification of different en forms of migraine, including episodic with aura, episodic migraine without chronic migraine.	migraine aura, and
Table 2:	Descriptive for demographic and chara of the studied patients.	
Table 3:	Descriptive data regarding Seizure Epilepsy etiology, Age of onset, relation of Headache to seizure, Heada and EEG	Temporal ache Type
Table 4:	Comparison between generalized a seizure onset among etiology, tempora of headache, age of onset, headache EEG results.	l relation type and
Table 5:	Comparison between headache type seizure type at onset, epilepsy etiology, relation of headache, age of onset a results.	temporal and EEG
Table 6:	Comparison between peri-Ictal amon type at onset, epilepsy etiology, age headache type and EEG results	of onset,
Table 7:	Comparison between post-Ictal amon type at onset, epilepsy etiology, age headache type and EEG results	of onset,
Table 8:	Comparison between EEG results seizure type at onset, epilepsy etiology, relation of headache, age of onset, type and EEG results	temporal headache

Introduction

pilepsy is the most common chronic brain disease and affects people of all ages. More than 50 million people worldwide have epilepsy; nearly 80% of them live in low- and middle-income countries (WHO, 2019).

The International League Against Epilepsy (ILAE) adopted a new practical definition for epilepsy as a disease with either recurrent unprovoked seizures (ie, two or more unprovoked seizures occurring at least 24 hours apart) or a heightened tendency toward recurrent unprovoked seizures (ie, a single seizure, accompanied by evidence from clinical, electro-encephalographic, or neuroimaging tests that a heightened risk [at least 60%] exists for future seizures over the next 10 years), or when an epilepsy syndrome is diagnosed (Falco-Walter et al., 2018).

Headache, especially migraine, is one of the most common comorbidities in epilepsy. The comorbidity of migraine may influence the choice of anti-epileptic medication (AED). Some AEDs such as topiramate and valproate have proven effective in migraine prophylaxis and are approved for this indication by the US Food and Drug Administration (FDA) (Mameniškien et al., 2016).

In 1906, Gowers first advanced the clinical hypothesis of a relationship between epilepsy and migraine, since the two

conditions show a well-recognized clinical, pathophysiological and therapeutic overlap (Gowers, 1906).

Recent studies, have been showed that 7% -57% of patients with epilepsy report active interictal headaches. Migraine is seen in 2% -26.3% of this population, while tension-type headache is seen in 9% -19.1%. Postictal headache is reported frequently in patients with epilepsy (PWE). These headaches generally have features of migraine (21% -53% of postictal headaches) (Whealy et al., 2019).

Headache frequently co-morbid with most chronic diseases such as epilepsy. For instance, a review conducted to see the relationship between headache and epilepsy reported the comorbidity of headache and epilepsy as a result of common genetic mutations and clinical features, but the suggested link is not revealed conclusive evidence of a real causal association. Further, studies also suggested that there are genetic relationships as well as common underlying pathophysiological mechanisms including the imbalance between excitatory and inhibitory neurotransmitters in epilepsy and headache, especially for migraine. Proposed theories for shared etiologies include ion dysfunction, channel glutamatergic mechanisms, mitochondrial dysfunction. These suggest that the cause of headache and epilepsy are multifactorial and hence need different diagnostic and interventional approaches (Duko et al., 2020).

Interpretation of EEG can be important for the differential diagnosis of some disorders with headache as a presenting symptom. Interictal EEG (between headache attacks) is not significant in routine evaluation of these patients, but can be useful in patients with unusual symptoms suggesting epilepsy or migraine (Miskov, 2008).

The most definitely abnormal EEGs with unilateral or bilateral delta activity have been recorded during attacks of hemiplegic migraine, and during attacks of migraine with disturbed consciousness (Sand, 1991).

EEG abnormalities have been found in occipital, frontal, and temporal areas regardless of side of headache. Slow waves are the most common abnormality (52.64%) seen followed by sharp waves (42.10%) and spikes (5.26%) in descending order these abnormalities (slow wave, sharp wave and spike) are seen more in migraine with aura (MWA) and changes are more common in occipital region, followed by frontal region. Frontal EEG abnormalities are equally present in both types of migraine (Hamad et al., 2014).

According to the temporal relationship with seizures, peri-ictal headache (peri-IH) was divided into pre-ictal headache (pre-IH), ictal and post-ictal headache (post-IH) (Mainieri et al., 2015).

To make things even more difficult, new data suggest that a headache may sometimes be the only ictal manifestation of an epileptic seizure: so-called "ictal epileptic headache". This entity has been cited in the defined and published classification of headache disorders (ICHD-III) (Mameniškien et al., 2016).

"Ictal epileptic headache" is headache caused by and occurring during a partial epileptic seizure, ipsilateral to the epileptic discharge, and remitting immediately or soon after the seizure has terminated. May be followed by other epileptic manifestations (motor, sensory or autonomic) (IHS, 2018).

"Post-ictal headache" is headache caused by and occurring within 3 hours after an epileptic seizure, and spontaneously within 72 hours after seizure remitting termination. Occurs in over 40% of patients with either temporal lobe epilepsy or frontal lobe epilepsy and in up to 60% of patients with occipital lobe epilepsy. It occurs more frequently after generalized tonic-clonic seizures than other seizure types (IHS, 2018).

Furthermore, headache is very common in the general population. Moreover, headache (especially migraine) is one of the most common comorbidities in epilepsy. So; this study participates in clarifying the relationship between headache and epilepsy which will improve the quality of epileptic patients and help in optimizing the therapeutic decisions of epileptic patients with headache.

AIM OF THE WORK

To estimate:

- Temporal relationship of headache (Pre-ictal, Ictal, Post-ictal) with respect to seizure
- Assess different types of Post-ictal headache (tension-type headache, migraine and cluster headache)
- Characteristics of EEG changes in epileptic patients with headache.

EPILEPSY

Seizure as a word, derives from the Greek meaning to take hold. Epileptic seizure is defined conceptually as: "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain." This definition was updated by the ILAE in 2005 (*Fisher et al.*, 2005) and was not changed in 2014 when the definition of epilepsy was updated (*Fisher et al.*, 2014).

In 2014, the International League against Epilepsy (ILAE) revised the definition of *epilepsy* as a disease of the brain with (1) at least two unprovoked (or reflex) seizures occurring greater than 24 hours apart, or (2) one unprovoked (or reflex) seizure and a probability of further seizures similar to the general recurrence risk (at least 60%) after two unprovoked seizures, occurring over the next 10 years, or (3) diagnosis of an epilepsy syndrome (*Fisher et al.*, 2014).

Classification of seizures and epilepsies

The prior and current classification systems aim to group seizures according to clinical presentation and brain region onset and to group epilepsies according to seizure type, age of onset, probability of remission, EEG findings, radiologic findings, and genetics. The classification is important for communication and diagnostic purposes, but also for evaluating drug specificity and prescribing the most appropriate therapy.