

Mona maghraby

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأقراص المدمجة قد أعدت دون أية تغيرات

Mona maghraby

بعض الوثائق الأصلية تالفة وبالرسالة صفحات لم ترد بالأصل

Minufiya University
Faculty of Engineering
Civil Engineering Dept.

BINNE

Concrete Admixtures

By NOHA MOHAMED MOHAMED SOLIMAN

B.Sc. 1996 Civil Engineering Dept. Minufiya University.

A THESIS

Submitted In Partial Fulfillment For The Requirements Of The Degree Of Master Of Science In Engineering (Structural Engineering – Strength And Test Of Materials)

SUPERVISORS

Prof. Dr. MONIR MOHAMED KAMAL

Professor Of Strength of materials
Civil Engineering Dept.
Faculty of Engineering,
Minufiya University

Dr. Yousry Bayomy Shaheen

Assistant prof. In Civil Engineering Dept.

Faculty of Engineering,

Minufiya University

Dr. Sohier Yousef Tawfek,

Assistant Prof. Polymers and Pigments Dept. National Research center S-TRufek

A.M. Kinawy

July - 2000

Minufiya University

Faculty of Engineering Civil Engineering Dept.

Concrete Admixtures

By
NOHA MOHAMED MOHAMED SOLIMAN
B.Sc. 1996 Civil Engineering Dept. Minufiya University.

A THESIS

Submitted In Partial Fulfillment For The Requirements Of The Degree Of Master Of Science In Engineering (Structural Engineering – Strength And Test Of Materials)

Examiners Committee

Prof. Dr/ Mahmoud A. Metawi

Professor of Strength of Materials

Faculty of Engineering

Al-Azhar University

Prof. Dr. Monir Mohamed Kamal

Professor Of Strength of Materials

Civil Engineering Dept.

Faculty of Engineering,

Minufiya University

Prof. Dr/Ahmed M. Ragab

Professor of Strength of Materials

Faculty of Engineering

Cairo University

Dr. Yousry Bayomy Shaheen

Assistant prof. In Civil Engineering Dept.

Faculty of Engineering,

Minufiya University

Shorhoe

2000

بنالتهالخالت

11

Abstract

This research was conducted to determine the real efficiency of some types of concrete admixtures commercially available in the Egyptian marker on the properties of fresh and hardened cement paste, cement mortar and concrete, Effect of high temperature and fire on the behavior and strength of plain concrete specimens and reinforced concrete beams has also been investigated. Conclusions, recommendations and future studies in the field of concrete admixtures in different environments has been presented.

Acknowledgments

The author is indeed – indebted to Prof. Dr. Monir Mohamed Kamal Prof. Of Strength of materials Civil Engineering Dept. Faculty of Engineering, Minufiya University for his constant advice and guidance which greatly contributed to the research.

Thanks are also expressed to Dr. Yousry Bayomy Shaheen, Assistant prof. In Civil Engineering Dept. Faculty of Engineering, Minufiya University and Dr. Sohier Yousef Tawfek, Assistant Prof., Polymer and Pigments Department, National Research Center. for their helpful discussions and guidance-

Thanks are also given to **Prof**. **Dr. Omima Salah**, *Chairman of GOHBR*, for providing the researcher with extensive published papers in the field of concrete admixtures which helped greatly in covering the literature review.

Gratitude is offered to the administrative and technical staff of the Civil Engineering Department for their assistance and cordial relationship.

Thanks are also extended to my family for their spiritual support and continuous encouragement.

Title		Page
Abstract		<mark>.</mark> 1
Acknowled	gment	<mark> II</mark>
Contents		<mark>.</mark> III
9.50	res	
List of Tabl	es	XIV
Chapter 1:	Introduction	
1-1 Ger	neral	1
1-2 Res	earch Objectives	<mark>.</mark> 1
1-3 The	sis outlines	1
Chapter 2:	Concrete Admixtures	
2-1 Intro	oduction	3
2-2 Def	nitions of Admixtures	3
2-3 Clas	ssification of Admixtures	5
2-4 Dev	elopment of chemical admixtures	7
2-4	-1 Conventional Chemical	8
	2-4-1-1 Composition	8
	2-4-1-2 Historical Development	8
2-4	-2 The Modern Admixtures	12
	2-4-2-1 Air-entraning Admixtures	12
	2-4-2-2 Accelerating Admixtures	14
	2-4-2-3 Admixtures For Flowing Concrete	<mark> 16</mark>
	2-4-2-4 Miscellaneous Admixtures	<mark>.</mark> . 18
	2-4-2-5 Water reducing and set controlling	23
2-5 Imp	ortance of Determination of the proper	
Do	sage of the Admixture	35

Title	Page
2-6 Various Effect of Admixtures on the Properties	
of Fresh Concrete	37
2-6-1 Water reduction	
2-6-2 Time of Setting	
2-6-3 Air- Entrainment	
2-6-4 Workability	
2-6-5 Bleeding	
2-6-6 Heat of Hydration and Temperature	W
2-6-7 Rate of Slump loss	
2-6-8 Finishing	
2-7 Effect of Admixtures on the properties of	
Hardened Concrete	42
2-7-1 Strength	
2-7-2 Shrinkage and Creep	
2-7-3 Durability	
2-8 Preparation and Batching	44
2-9 Proportioning of Concrete Mixes Counting	
Admixtures	
2-10 Quality Control	45
2-11 Precautions	
2-12 Chemical Admixtures for Concrete in Hot Weat	
Chapter 3: Experimental Work	
3-1 Introduction	
3-2 characteristics of materials used	
3-2-1 Aggregate	59
3-2-2 Cement	
3-2-3 Water	
3-2-4 Admixtures	01

Title		Page
	3-2-5 Reinforcing Steel	61
3-3	B Cement Paste Mortar and Concrete Mixes	61
	3-3-1 Cement paste	61
	3-3-2 Mortar	61
	3-3-3- Concrete	62
3-4	Specimens Preparation and Testing	62
3-5	Concrete Mix design	64
3-6	Flexural behaviour of R.C. beams exposed to fire.	65
3-7	Testing of R.C. beams exposed to fire	66
3-8	Machines and devices used	67
Chapte	er 4: Analysis and Discussion of Test Result	
	For Cement and Mortar Mixes	
	Introduction	
4-2	? Cement Paste	., 78
4-3	Mortar	80
	4-3-1 Workability of Mortar Mixes	80
	4-3-1-1 Effect of Admixture Dosage on Morta	r
	Admixture Workability	81
	4-3-2 The Effect of different Types of Admixtures of	on
	Compressive Strength of Mortar	82
	4-3-2-1 Effect of Admixtures Content on	
	Compressive Strength of Mortar	82
	4-3-2-2 Effect of Age on Mortar Compressive	
	Strength	85
Chapte	r 5: Analysis and Discussion of Plain Concrete)
	Results	
5-1	Introduction	110

Title		Page
5-2 Eff	fect of the different types of admixtures used	2 2 2
0	n the properties of fresh concrete	111
5-3 Ef	fect of the different types of admixtures used	
	on the properties of hardened concrete	112
5-	-3-1 Concrete Compressive Strength	112
5-	-3-2 Indirect tensile strength of Concrete	114
5-	-3-3 Modulus of elasticity of concrete	116
	5-3-3-1 Egyptian code of practice	116
	5-3-3-2 American code of practice	117
CHAPTER	8 6: Flexural Behaviour of Reinforced Concrete)
	Beams Exposed to Fire	
6-1 In	troduction	134
	eformations of Reinforced Concrete Beams	
6	-2-1 Deflection 🛆	135
6	-2-2 Longitudinal Strains	139
	6-2-2-1 Longitudinal tensile strains	
	6-2-2-2 Longitudinal Compressive Strain	145
	racking of Reinforced Concrete Beams	
6	S-3-1 Crack Initiation	150
	S-3-2 Crack Spacing	
6-4 U	Itimate Capacity of Reinforced Concrete Beams	151
. 6	6-4-1 The Effect of Fire on Ultimate Capacity of	
	Beams	152
6	6-4-2 The Effect of Admixture on ultimate Capacit	
	of Beams	152

= Lists Offigures =

List Of Figures

No.	Title	Page
Fig (2-1)	Effect of air content on durability	49
Fig (2-2)	Effect of freezing and thawing on dynamic	
	Modulus of Elasticity.	49
Fig (2-3)	Approximate reduction in mixing water	
	for air entertainment	50
Fig (2-4)	Effect of air content on compressive strength.	50
Fig (2-5)	Effect of accelerator on setting time	51
Fig (2-6)	Effect of calcium chloride upon the rate of	
	hydration	52
Fig (2-7)	Rate of strength development of concrete	
	with and without calcium chloride	52
Fig (2-8)	Water-reducing admixtures In large pours	
	reduced temperature	53
Fig (2-9)	The extension of reverberation time of concre	ete
	using various dosages of a retarding admixtu	re.53
Fig (2-10)	Effect of a type D water reducer on water	
	requirements	54
Fig (2-11)	Effect of temperature on compressive strengt	
		54
Fig (2-12)	Effect of high-range water reducing	
	on water reduction	55
Fig (2-13)	Effect of dosage of high - range water reduce	er
	on slump at constant water / cement ratio	55
Fig (2-14)	Effect of a lignin retarded on setting time	56

= Lists Offigures =

No.		Title	Page
Fig (2-15	5)	Effect of W/C on compressive strength	.57
Fig(2-16)		Effect of type D water reducers on	
		compressive strength.	.57
Fig (3-1)		Coarse aggregate grading	.70
Fig (3-2)		Fine aggregate grading	
Fig (3-3)		Combined aggregate grading	
Fig (3-4)		Compaction on concrete in the wooden forms	
9 (by Rod Vibrator	75
Fig (3-5))	Tested Rig for R.C. Beams	75
Fig (3-6		Fire chamber	76
Fig (3-7		Reinforced beam	77
Fig (3-8		Place of demec points	77
Fig(4-1))	Water content for cement mixes with different	
		admixtures compared with the control mix	00
		batch (1) for the same consistency	92
Fig(4-2))	Initial Setting time for cement mixes with	1
		different admixtures compared with the control	03
		mix batch (1) for the same consistency	95
Fig(4-3)	Final Setting time for cement mixes with	ol
		different admixtures compared with the contraining batch (1) for the same consistency	94
		Water content for cement mixes with differen	
Fig(4-4	+)	admixtures compared with the control mix	
		batch (2) for the same consistency	95
Fig(A F	5)	Initial Setting time for cement mixes with	
Fig(4-5)	different admixtures compared with the contra	ol
*		mix batch (2) for the same consistency	96

= Lists Offigures ——

No.	Title
Fig(4-6)	Final Setting time for cement mixes with
	different admixtures compared with the control
	mix batch (2) for the same consistency97
Fig(4-7)	The Workability of Cement Mortar with
	different admixtures compared with the control
	mix –for cement / sand 1 : 2100
Fig(4-8)	The Workability of Cement Mortar with
E 20	different Admixtures compared with the control
	mix – for cement/sand 1:3101
Fig(4-9)	The Workability of Cement Mortar with
	different Admixtures compared with the control
	mix – for cement / sand 1:3102
Fig(4-10)	The Workability of Cement Mortar with
	different Admixtures compared with the control
	mix- for cement / sand 1:3103
Fig(4-11)	The Workability of Cement Mortar with
	different Admixtures compared with the control
	mix – for cement / sand 1 : 4104
Fig(4-12)	The Compressive Strength for Cement Mortar
	with different Admixtures compared with the
	control mix -at 3, 7 and 28 days for cement /
	sand 1:2105
Fig(4-13)	The Compressive Strength for Cement Mortar
	with different Admixtures compared with the
	control mix -at 3, 7 and 28 days for cement /
	sand 1 · 3

= Lists Offigures =

No.	Title Page	
Fig(4-14)	The Compressive Strength for Cement Mortar	
	with different Admixtures compared with the	
	control mix -at 3, 7 and 28 days for cement /	
	sand 1 : 3107	
Fig(4-15)	The Compressive Strength for Cement Mortar	
	with different Admixtures compared with the	
	control mix -at 3, 7 and 28 days for cement /	
9	sand 1:3108	
Fig(4-16)	The Compressive Strength for Cement Mortar	
	with different Admixtures compared with the	
	control mix -at 3, 7 and 28 days for cement /	
	sand 1 : 4109	
Fig (5-1)	Slump loss of concrete by using admixture124	
Fig (5-2)	Compressive Strength of concrete (cured at	
	20°C for 7 and 28 days)125	
Fig (5-3)	Compressive Strength of concrete (cured at	
	70°C for 7 and 28 days)126	
Fig(5-4)	Compressive Strength of concrete using	
	optimum admixtures dosage and cured at	
	different temperatures for 7 and 28 days127	
Fig (5-5)	Indirect Tensile Strength of concrete (cured at	
	20°C for 7 and 28 days)128	
Fig (5-6)	Indirect Tensile Strength of concrete (cured at	
	70°C for 7 and 28 days)129	
Fig (5-7)	Indirect Tensile Compressive Strength of	
20 800 1986 (1986)	concrete using optimum admixtures dosage	
	and cured at different temperatures for 7 and	
	28 days130	