

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / مني مغربي أحمد

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

AIN SHAMS UNIVERSITY

1992

1992

ملاحظات: لا يوجد

Clinical Value of CASR Gene Polymorphism on Cinacalcet Response in Hemodialysis Patients with Secondary Hyperparathyroidism

Thesis

Submitted for Partial Fulfillment of Master Degree in Internal Medicine

 $\mathcal{B}y$

Neveen Nabil Abdelshaheed

M.B.B.Ch.
Internal Medicine Department, Ain Shams University
Under Supervision of

Prof. Dr / Sahar Mahmoud Shawki

Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Ass. Prof. Dr/ Maha AbdELmoneim Behairy

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

Ass. Prof. Dr/ Hoda Ahmed Abdelsattar

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Dr/ Ahmed Yehia Mohamed

Lecturer of Internal Medicine and Nephrology Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2022

Acknowledgments

First and foremost, I feel always indebted to GOD the Most Beneficent and Merciful.

I wish to express my deepest thanks, gratitude and appreciation to Prof. Dr / Sahar Mahmoud Shawki, Professor of Nephrology, Faculty of Medicine, Ain Shams University, for her meticulous supervision, kind guidance, valuable instructions and generous help.

Special thanks are due to Ass. Prof. Dr/ Maha AbdELmoneim Behairy, Assistant Professor of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for her supervision, continuous help, encouragement throughout this work and tremendous effort she has done in the meticulous revision of the whole work.

I am deeply thankful to Ass. Prof. Dr/ Hoda Ahmed Abdelsattar, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her great help, outstanding support, active participation and guidance.

Last but not least my sincere thanks and appreciation to Dr/Ahmed Yehia Mohamed, Lecturer of Internal Medicine and Nephrology, Faculty of Medicine, Ain Shams University, for his sincere efforts, fruitful encouragement.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Neveen Nabil Abdelshaheed

List of Contents

Title Page No.
List of Tablesi
List of Figuresiv
List of Abbreviationsvi
Introduction1
Aim of the Work3
Review of Literature
Chapter 1: Chronic Kidney Disease – Mineral Bone Disease (CKD- MBD)4
Chapter 2: Calcium Sensing Receptor (CaSR) Gene Polymorphism24
Chapter 3: Management of Secondary Hyperparathyroidism (SHPT) in Hemodialysis Patients
Patients and Methods56
Results71
Discussion109
Summary114
Conclusion118
Recommendation118
References119
Arabic Summary

List of Tables

Table No	o. Title	Page No.
Table 1:	Prognosis of CKD by GFR and albumi	
Table 2:	Classification of hyperparathyroidism	21
Table 3:	Recommended Levels of Biochemica Patients with Chronic Kidney Disease.	
Table 4:	Regulators of CaSR	29
Table 5:	Pharmacokinetic properties of calcimi	metics48
Table 6:	Components of the Reaction Mix in Ea	ch PCR Reaction 65
Table 7:	Thermal Cycling Protocol	66
Table 8:	Relation between Fluorescence Signa in Each Sample	
Table 9:	Distribution of the studied case demographic data (n = 50)	_
Table 10:	Distribution of the studied patien demographic parameters (n = 50)	•
Table 11:	Descriptive analysis of the studied part to baseline labs $(n = 50)$	
Table 12:	Comparison between laboratory data treatment with cinacalcet (n = 50)	
Table 13:	Correlation between PTH and different pa	arameters (n = 50) 76
Table 14:	Descriptive analysis of the studied pato delta change and percentage of char	O
Table 15:	Distribution of the studied cases ac reduction PTH (n = 50)	_

List of Tables cont...

Table No	o. Title	Page No.
Table 16:	Distribution of the studied cases according teatment (n = 50)	
Table 17:	Distribution of the studied case rs1042636 (n = 50)	
Table 18:	Distribution of the studied patients a gene /SNP rs1802757 (n = 50#)	S
Table 19:	Comparison between Responder an according to demographic data (n = 5	•
Table 20:	Comparison between Responder an according to calcium, phoshous, alkal	*
Table 21:	Relation between rs1042636 and change and percentage of change (n =	
Table 22:	Relation between rs1802757 and change and percentage of change (n =	
Table 23:	Relation between rs1042636 a demographic data (n = 50)	
Table 24:	Relation between rs1802757 a demographic data (n = 50)	
Table 25:	Comparison between Responder and of reduction PTH according to rs1042	-
Table 26:	Comparison between Responder and of reduction PTH according to rs1802	•
Table 27:	Comparison between Responder an PTH post treatment to CASR gene rs1	-

List of Tables cont...

Table No	. Title	Page No.
Table 28:	Comparison between Responder and PTH post treatment to rs1802757	•
Table 29:	Distribution of the studied cases haplotype (n = 96#)	
Table 30:	Comparison between Responder and N of reduction PTH according to haplotyp	-
Table 31:	Comparison between Responder and PTH post treatment to haplotype	•
Table 32:	Relation between Haplotype with depercentage of change alkaline phospha	C
Table 33:	Univariate and multivariate Logi analysis for the parameters affecting delta change of PTH ≥20)	responder (% of
Table 34:	Univariate and multivariate Logi analysis for the parameters affecting re 600)	esponder (PTH ≤

List of Figures

Fig. No. Title Page	ge No.
Figure 1: Normal vitamin D metabolism and steps the affected by high FGF-23 in CKD	
Figure 2: The parathyroid-bone-kidney feedback loop.	
Figure 3: Pathogenesis of secondary hyperparathyr	
(SHP) in chronic kidney disease	
Figure 4: Pathogenesis of secondary hyperparathyroidi	
Figure 5: Receptor resistance in SHP	
Figure 6: Regulators of parathyroid cell proliferation in	
Figure 7: Calcium-sensing receptor (CaR)	
Figure 8: Regulation of parathyroid hormone secretion	
calcium-sensing receptor	•
Figure 9: Effect of calcimimetic on CaSR	
Figure 10: Treatment algorithm for sec	
hyperparathyroidism (SHPT) in pre-dialyst	-
and dialysis patients	
Figure 11: Phosphate binders for patients with chroni	
impairment	
Figure 12: Vitamin D receptor (VDR) activation	
Figure 13: Genomic DNA extraction procedure	
Figure 14: Distribution of the studied cases accord	
rs1042636	_
Figure 15: Distribution of the studied patients accord	
rs1802757	_
Figure 16: Relation between rs1042636 and allele wit	
change PTH (pg/ml)	
Figure 17: Relation between rs1042636 and allele	
percentage of change PTH (pg/ml) (n = 50)	
Figure 18: Relation between rs1802757 and allele wit	
change PTH (pg/ml) (n = 50)	
Figure 19: Relation between rs1802757 and allele	
percentage of change PTH (pg/ml) (n = 50)	

List of Figures cont...

Fig. No.	Title	Page No.
Figure 20:	Comparison between Responder and	l Non responder
Figure 21:	% of reduction PTH according to rs10 Comparison between Responder and	
Ei 22.	% of reduction PTH according to rs18	
Figure 22:	Comparison between Responder and PTH post treatment to rs1042636	_
Figure 23:	Comparison between Responder and PTH post treatment to rs1802757	*
Figure 24:	Distribution of the studied cases	s according to
Figure 25:	haplotype Comparison between Responder and	
Figure 26:	% of reduction PTH according to hap Comparison between Responder and	5 1
116410 201	% of reduction PTH according to hap	•

List of Abbreviations

Abb.	Full term
BMI	. Body mass index
CaR	
	. Calcium sensing receptor
	. Calcium x phosphorous
	. Central dialysis fluid delivery system
	. Chronic kidney disease
CT	.Confidence interval
CVS	. Cardio vascular system
CYP3A4	. Cytochrome P 3 A4
DCM	. Disatolic cardiomyopathy
DM	. Diabetes mellitus
EDTA	.Ethylene diamine tetra acetic acid
ESRD	. End stage renal disease
FAM	.Fluorescein amidites
FE	. Fisher exact
FGF	. Fibroblast growth factor
GFR	. Glomerular filtration rate
GN	. Glomerulonephritis
HBG	. Hemoglobin
HCV	. Hepatitis C virus
HD	. Hemodialysis
HTN	
IPTH	. Intact parathyroid hormones
IQR	.Interquatile range
IS	.Speaman coefficient
KDIGO	. Kidney disease improving global outcomes
Kg/m	.Kilogram/meter
LL	
	. Mineral bone disease
MC	. Monte carlo
Mg	
	.Minor groove binder
N	
NFQ	.Non flurorescent quencher

List of Abbreviations cont...

Abb.	Full term
OR	Odd's ratio
P	Phosphouls
PCKD	Polycytic kidney disease
PTH	Parathyroid hormone
PTx	Para thyrodectomy
SD	Standard deviation
SHPT	Secondary hyperparathyrodism
	Single necleotide polymorphysm
TM	Melting temperature
TM	
u	Mann whitney test
UL	Upper limb
URR	Urea reduction rate
VDR	Vitamin D receptor
VDRA	Vitamin D activators
X	Chi square test

INTRODUCTION

hyperparathyroidism (SHPT) is C econdary common complication of chronic kidney disease (CKD), associated clinical manifestations, termed CKD- mineral bone disorder (CKD-MBD), include increased risk of fracture. an cardiomyopathy, anemia, pruritus, extra skeletal calcification, increased risks of mortality and morbidity among CKD patients. (Tabibzadeh et al., 2021).

Management of secondary hyperparathyroidism attenuate many of these manifestations. Treatment options include the use of pharmacologic doses of 1, 25 dihydroxy vitamin D (calcitriol) or related analogs, the calcimimetic cinacalcet, and parathyroidectomy (Kuczera et al., 2013).

The calcium-sensing receptor (CaSR), a G protein located on the parathyroid gland, is key in the regulation of PTH levels. In hyperplastic parathyroid glands from patients with SHPT, CaSR down regulation has been demonstrated, particularly in glands with nodular hyperplasia, and has been shown to be an important pathogenic contributor to the progression of SHPT (Rottembourg et al., 2019).

Cinacalcet is an oral calcimimetic agent available for treatment of SHPT in chronic kidney disease (CKD). Cinacalcet increases the sensitivity of the calcium-sensing receptor (CASR), agonists of the calcium receptor induce which are conformational change in the calcium receptor, which reduces the

threshold for stimulation by extracellular calcium. Because cinacalcet acts directly on the parathyroid gland to suppress the production and secretion of PTH, the result is a decrease in iPTH the main regulator of PTH secretion, to extracellular ionized calcium ions, resulting in decreased parathyroid hormone (PTH) level. In dialysis patients with SHPT, cinacalcet is efficacious in lowering levels of PTH, serum phosphate, and serum calcium as well as reducing the risks of parathyroidectomy, fractures, and cardiovascular hospitalization (Warady et al., 2019).

AIM OF THE WORK

he aim of the present study is to evaluate the frequency of variants of study genes related to PTH regulation (CASR rs 1042636 and CASR rs 1802757) and to assess the effect of these single nucleotide polymorphism on cinacalcet response among prevalent hemodialysis patients with secondary hyperparathyroidism.

	K	D-	Ν	1P	D
U	\	ບ −	ıν		-

Review of Literature

CHRONIC KIDNEY DISEASE — MINERAL BONE DISEASE (CKD- MBD)

Definition

Chronic kidney disease (CKD) is defined as abnormalities of kidney structure or function, present for more than 3 months, with health implications. CKD is commonly associated with disorders of mineral and bone metabolism manifested by either one or a combination of the following three components:

- Abnormalities of calcium, phosphorus, parathyroid hormone (PTH), fibroblast growth factor 23 (FGF23), and vitamin D metabolism.
- Abnormalities in bone turnover, mineralization, volume linear growth, or strength.
- Extraskeletal calcification.

The workgroup of the Kidney Disease Improving Global Outcomes (KDIGO) recommended the use of the term chronic kidney disease-mineral and bone disorder (CKD-MBD) to describe a systemic disorder that incorporates these abnormalities. Each of these abnormalities is associated with high mortality rates primarily from cardiovascular complications (which is the leading cause of death in patients at all stages of CKD) (*KDIGO CKD-MBD update Work Group, 2017*).