

بسم الله الرحمن الرحيم

00000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
	s and no see to be the control of the control
خامتهانی میندانی AIN SHAMS UNIVERSITY	
since 1992	<i>f</i>

تربيحات وتكنوبوجبارها

Performance characterization of Novel Organic/Silicon Solar Cells

A Thesis Submitted to Faculty of Science-Ain Shams University in partial fulfillment for The Degree of Master of Science (M.Sc.) in Physics

By

Asmaa Mohamed AbdelHafiz Aly

B.Sc. in Physics - Faculty of Science- Ain Shams University-2016

Supervised by

Prof. Dr. Ashraf Shamseldin Yahia

Professor of electronics and electromagnetics, Physics Dept., Faculty of science, Ain Shams University

Prof Dr. Mohamed Farahat Othman

Professor of Photonics, Mathematics and Engineering Physics Dept., Faculty of Engineering, El Mansoura University

Dr. Mohamed Hussein Abd El-Razik

Lecturer of physics, Physics Dept., Faculty of science, Ain Shams University.

Physics Department Faculty of Science Ain Shams University (2021)

APPROVAL SHEET

Performance characterization of Novel Organic/Silicon Solar Cells

By

Asmaa Mohamed AbdelHafiz Aly

Supervisors:	Signature
Prof. Dr. Ashraf Shamseldin Yahia Professor of electronics and electromagnetics, Physics Dept., Faculty of science, Ain Shams University.	
Prof Dr. Mohamed Farahat Othman Professor of Photonics, Mathematics and Engineering Physics Dept., Faculty of Engineering, El Mansoura University	
Dr. Mohamed Hussein Abd El-Razik Lecturer of physics, Physics Dept., Faculty of science. Ain Shams University.	

Performance characterization of Novel Organic/Silicon Solar Cells

Name: Asmaa Mohamed AbdelHafiz Aly

Degree: M.Sc.

Department: Physics

Faculty: Science

University: Ain Shams University

Graduation Date: 2016 - Ain Shams University

Registration Date: 14/5/2019

Grant Date: 2021

© 2021 Asmaa Mohamed AbdelHafiz Aly ALL RIGHTS RESERVED

Contents

	owledgments	
Abstr	act	1
	f Publications	III
 List o	f Symbols	V
	f Abbreviations	VI
 List o	f Figures	VIII
	f Table	IX
	ter 1 Introduction	XIV
	Solar spectrum	3
	Air Mass	4
1.2		5
1.3	•	7
1.3.1	First-generation	8
	Second-generation	8
	Third-generation	9
• • • • • • • • • • • • • • • • • • • •		10

1.4	U	
 1.5	Thesis outline	11
		12
Chapt	ter 2 Crystalline silicon solar cells	14
	Introduction	
	Basic Materials of Solar Cells	16 17
2.2.1	Essential Properties of Semiconductor Materials	17
2.2.2	Intrinsic Semiconductor	20
	Doping of semiconductors	
	Absorption of the light	20
2.4	Generation Rate	21
2.5	Recombination Rate	22
	Charge Transport	22 24
2.7	Fundamental equations of the semiconductor devices	25
2.8	Formation of the p-n junction	26
2.9	The Dark behavior of the p-n junction	
2.10	The illumination behavior of the p-n junction	29
2.11	The equivalent circuit of the solar cell	30
2.11.1	Ideal solar cell circuit	31
		31

2.11.2	The realistic solar cell model
2.12	Shockley-Queasier limit.
2.13	The solar cell characteristics
2.14	Loss mechanisms
2.15	Thin-Film Solar Cells (TFSC)
2.16	Light trapping in solar cell
2.17	Summary
Chapte	er 3 Organic solar cell
3.1	Introduction
3.2	Structure of Organic solar cell
3.3	Organic solar cell operation principles
3.4	Observations on OSCs from a physical perspective
3.5	Organic Solar Cell material
3.5.1	Organic semiconductor
3.5.2	Material of the active layer
3.5.3	Material of the hole transport layer (HTL)
3.5.4	Material of the electron transport layer (ETL)
3.6	Organic Solar Cell Architectures
3.7	Challenges and Opportunities in Organic Solar Cells
3.8	The difference between organic and inorganic solar cell
3.9	Summery

Chap	ter 4 Computational Technique
4.1	Introduction
	Overview of numerical methods for highly efficient Thin Solar Cells
4.3	Introduction to FDTD method
	Advantages of FDTD method
4.5	Overview of FDTD method
	Frequency - dependent materials in FDTD Method
4.7	
	Periodic boundary conditions (PBCs)
	Perfectly matched layers (PML)
	Lumerical FDTD solutions
4.9	How to avoid the divergence in FDTD simulation?
	D_t stability
	PML considerations
4.10	The Electrical Simulator
4. 11	Summary
Chap Cell	ter 5 Results of Highly Efficient Grating Thin Film Solar
5.1	Introduction

5.2	Optical and electrical simulation strategy	
	Results and discussion	80
		84
	Optical analysis	84
	Electrical analysis	04
	Danil of Danier, borred in consult and an all	95
	Result of Research work in organic solar cell	104
5.5	·	105
	ter 6 Conclusions and future work	105
		108
	nclusions	108
6.2 Fu	ture work	100
		109
Refere	ences	110
		110

Acknowledgments

First, I wish to start by the name of Allah who is the most merciful and our prophet Muhammad peace upon him. I must declare that without the support of Allah I were not to be here, it is only Allah mercies that made me finish this thesis, and Allah let me know good people to whom my regards must go.

I would like to express my thanks to all professors and colleagues who contributed to the work presented in this thesis.

I am deeply grateful to Prof. Dr. Ashraf Shamseldin Yahia, Professor of Electronics, Physics Department, Faculty of Science, Ain Shams University, whose supervision, encouragement, guidance, and support, from the start to the end, enabled me to develop a thorough understanding of this thesis. Throughout this study, he has constantly addressed me with helpful advice and suggestions

I would like to thank Prof. Dr. Mohammed Farahat, Associate Professor at Nanotechnology Engineering Program, University of Science and Technology, Zewail City of Science and Technology and ASSOC Professor at Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University for suggesting a novel and excellent point of research along with his continuous encouragement, valuable and abundant discussions throughout this work.

I would like to express my deep gratitude to Dr. Mohamed Hussien, Assistant Professor of photonics at Zewail City of Science and Technology as well as at Department of Physics, Faculty of Science, Ain Shams University, for his continuous and invaluable guidance. His