

بسم الله الرحمن الرحيم

-Call 4000

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

جامعة عين شمس

التوثيق الإلكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأقراص المدمجة قد أعدت دون أية تغيرات

يجب أن

تحفظ هذه الأقراص المدمجة يعبدا عن الغبار

بالرسالة صفحات لم ترد بالأصل

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Study on Spatial Multiplexing Techniques in MIMO Systems

A Thesis Submitted for the Fulfillment of the Requirement of Master Degree In Electronics Engineering and Electrical Communications

By

Eng.\Asmaa Mohammed Kamel

B.Sc degree in Electrical Engineering Shoubra Faculty of Engineering, 2011

Supervised by

Prof.Dr \Abdelhalim Abdelnaby Zekry

Electronics and Electrical Communications Engineering Department, ASU University

Dr\Reem Ibrahim Saved

Design Departmentmanager ,VLSI Design Center,R&D,Electronics Factory, Cairo, Egypt

Electronics Engineering and Electrical Communications

STATEMENT

This thesis is submitted as a partial Fulfillment of Master of Science, In Electrical

Engineering, Faculty of Engineering, Ain Shams University

The Author carried out the work included in this thesis and no part of it has been submitted for a degree or a qualification at any other scientific entity

Student name: Asmaa Mohamed Kamel
Signature:
Date:/

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics Engineering and Electrical Communications

Resarcher Data

Name: Asmaa Mohamed Kamel

Date of Birth: 16/9/1989

Place of Birth: Cairo

First University Degree: B.Sc in Electrical Engineering

Department: Electronics and Communications Engineering

Faculty: Shoubra Faculty of Engineering

University: Benha University

Date of Degree: June, 2011

Contents

Abstract	7
List of Figures	8
List of Abbreviations	10
List of Symbols	11
Chapter 1: Introduction	13
1.1 Introduction.	13
1.2 LTE Design Principles	18
1.3 LTE Specifications	21
1.3.1 OFDMA and SC-FDMA	21
1.3.2 MIMO	23
1.4 Fifth generation Design Principles	23
1.5 Fifth generation Specifications	24
Chapter 2: Introduction to MIMO Systems	26
2.1 Introduction	26
2.2 MIMO Diversity Techniques	27
2.2.1. Transmit Diversity	28
2.2.2. Receive Diversity	29
2.3 MIMO Spatial Multiplexing Technique	29
2.4 Advantages of MIMO Systems	30
2.4 MIMO System Model	30

Chapter 3: Detection Techn	niques 1	for	Spatial	Multiplexing
MIMO System	•••••	••••	•••••	31
3.1 Spatial Multiplexing MIMO .				31
3.2 Optimal Detection Technique				32
3.3 Linear Detection Techniques.				33
3.3.1 Zero Forcing				34
3.3.2 Minimum Mea	n Square I	Error	(MMSE).	34
3.4 Non Linear Detection Techn	iques			35
3.4.1 Successive Interfere	ence Canc	ellati	on (SIC) .	35
3.4.2 QR Decomposition I	Detection 7	Tech	niques	37
Chapter 4: Tree Search Detec	ction Tec	chni	que	42
4.1 Sphere Decoding Detection	Technique	es		42
4.1.1 Sphere Decoding A	Algorithm	l		43
4.1.2 Sphere Decoding	Search Sta	rateg	ies	44
Chapter 5: Hardware Impleme	entation	Usi	ng FPGA	49
5.1 Introduction to VHDL				49
5.2 Introduction to FPGA				50
5.3 Hardware Implementation of	f Schnorr-	Euch	ner Sphere	2
decoder				52
Chapter 6: Conclusion and fu	ture wo	rk .	•••••	60
6.1Conclusion				60
6.2 Future Work				61
REFRENCES				62

Study on Spatial Multiplexing Techniques in MIMO Systems

Abstract

Multiple Input Multiple Output (MIMO) techniques use multiple antennas at both transmitter and receiver for increasing the channel reliability and enhancing the spectral efficiency of wireless communication system.MIMO Spatial Multiplexing (SM) is a promising technology that used to increase the channel capacity without additional spectral resources. The implementation of MIMO detection techniques become a difficult mission as the computational complexity increases with the number of transmitting antenna and constellation size. So designing detection techniques that can recover transmitted signals from Spatial Multiplexing (SM) MIMO with reduced complexity and high performance is challenging. In this thesis, the general model of MIMO communication system is presented in addition to multiple MIMO Spatial Multiplexing (SM) detection techniques, the optimal and suboptimal MIMO detection schemes have been analyzed. These detection techniques are divided into different categories, such as linear detection techniques like Zero-Forcing that offer low complexity with degraded Bit Error Rate (BER) performance as compared to non-linear techniques like VBLAST, that more complexity than linear but it offers acceptable performance. Tree techniques like Sphere Decoder that provides optimal performance but it suffers from exponentional complexity. Detailed discussions on the advantages and disadvantages of each detection algorithm are introduced. In this research, seeking the electronic design of building blocks of communication systems, we will concentrate on Schnorr-Euchner sphere decoder algorithm where the algorithm is designed and implemented in field programmable gate arrays FPGA using VHDL. The Schnorr-Euchner Sphere Decoder algorithm has been generated using an optimized simulator. This simulation has been developed using Modelsim simulator ® platform and implemented using VHDL/FPGA.

List of Figures

Fig.1.1: GSM 2G cellular network architecture.	14
Fig.1.2: 3G system architecture.	15
Fig.1.3: LTE deployment worldwide.	16
Fig.1.4: 4G architecture.	19
Fig.2.1: MIMO System Model.	27
Fig.2.2: Transmit diversity.	28
Fig.2.3: Receive diversity.	29
Fig.2.4: MIMO Spatial Multiplexing System.	29
Fig.3.1: SM Detection techniques.	32
Fig.3.2: Flowchart of Maximum likelihood algorithm.	33
Fig.3.3: Flowchart of SIC algorithm.	37
Fig.3.4: SQRD algorithm and signal detection.	40
Fig.4.1: Geometric representation of the SD algorithm.	42
Fig.4.2: Tree pruning.	44
Fig.4.3: Decoding tree with a Depth-First strategy.	45
Fig.4.4: Decoding tree with a Breadth-First strategy.	45
Fig.4.5: Fincke and Phost Sphere Decoding Algorithm.	46
Fig.4.6: Schnorr-Euchner Sphere Decoding Algorithm.	47
Fig.5.1: FPGA structure.	51
Fig.5.2: Flowchart indicate the steps of signal processing.	53
Fig.5.3. Flowchart of Schnorr- Euchner Sphere decoding algorithm.	54
Fig.5.4: Block diagram of the special adder for 32-bit floating point.	55

Fig.5.5:	ModelSim	wave	diagram	for	the	32-bit	floating	point	55
adder/subtraction output.									
Fig.5.6: Block diagram of the special multiplier for 32-bit floating point.						56			
Fig.5.7: ModelSim wave diagram for the 32-bit floating point multiplier						56			
output.									
Fig.5.8: Block diagram of the hardware building blocks of Schnorr-Euchner						57			
Sphere decoder.									
Fig.5.9: N	ModelSim wa	ve diagi	ram of Sch	norr-I	Euchn	er Sphere	e decoder.		58
Fig.5.10: Xilinx area report of Schnorr-Euchner Sphere decoder.						58			

List of Abbreviations

MIMO: Multiple-Input Multiple-Output.

SISO: Single-Input Single-Output.

SNR: Signal to Noise Ratio.

 Ω : Constellation set.

iid: independent and identically distributed.

SM: Spatial Multiplexing.

MLD: Maximum Likelihood Detector.

SD: Sphere Decoding.

ZF: Zero-Forcing.

MMSE: Minimum Mean Square Error.

() †: Moore-Penrose pseudo-inverse.

VBLAST: Vertical Bell Laboratories Layered Space Time.

SD: Sphere Decoding.

FP: Fincke-Pohst searching strategy.

SE: Schnorr-Euchner searching strategy.