

بسم الله الرحمن الرحيم

 $\infty\infty\infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		\$	ملاحظات:
		حامعتهت		
	since	1992	1.53	

بركات وتكنولوجياراه

Department of Botany

كلية معتمده

Evaluating the Properties of Biofuel from Seed Cakes of *Jatropha curcas* L.

A Thesis submitted in Partial Fulfillment of the requirement for the Master Degree in Science in Botany

By

Zahraa Salah Eldin Taha Mohamed

B.Sc. (2015) – Botany

To

Faculty of Science - Ain Shams University

Supervisors

Prof. Dr. Hala Fattouh Sayed Ahmed

Prof. of Plant Physiology, Faculty of Science, Ain Shams University.

Dr. Heba Metwally Hassan

Lecturer of Plant Physiology,
Faculty of Science,
Ain Shams University.

Ass. Prof. Ahmed Ibrahim Labena

Associate Prof. of Microbial Biotechnology, Egyptian Petroleum Research Institute (EPRI). (2022)

Department of Botany

Evaluating the Properties of Biofuel from Seed Cakes of *Jatropha curcas* L.

A Thesis submitted in Partial Fulfillment of the requirement for the Master Degree in Science in Botany

By

Zahraa Salah Eldin Taha Mohamed

B.Sc. (2015) – Botany

Faculty of Science - Ain Shams University

Supervisors

Prof. Dr. Hala Fattouh Sayed Ahmed

Prof. of plant physiology, Department of Botany,

Faculty of Science, Ain Shams University.

Dr. Heba Metwally Hassan

Lecturer of plant physiology, Department of Botany,

Faculty of Science, Ain Shams University.

Ass. Prof. Ahmed Ibrahim Labena

Associate Prof. of Microbial Biotechnology,

Egyptian Petroleum Research Institute (EPRI).

(2022)

Declaration

This thesis has not been submitted for a degree of this or any other university

Zahraa Salah eldin Taha

Dedication

I dedicate this thesis to my generous parents, to my supportive brothers, to my lovely husband and to my dearest daughter for their presence in my life and everything they have done for me.

Zahraa Salah eldin Taha

Acknowledgement

Firstly, I thank Allah the Lord of the worlds. Praise is to Allah, who guided us to this, never could we have found guidance, if it weren't for the guidance of Allah.

I would like to express my deep thanks to **Prof. Dr. Hala Fattouh Sayed Ahmed, Dr. Heba Metwally Hassan** (Botany Department,

Faculty of Science, Ain Shams University) and **Ass. Prof. Ahmed Ibrahim Labena** (Egyptian Petroleum Research Institute) for suggesting the research point, following up the practical part and revising the manuscript.

Thanks to **Prof. Dr. Amal Ahmed Morsy** (Head of Botany Department, Faculty of Science, Ain Shams University).

Special thanks to **Dr. Hekmat Madian** (Egyptian Petroleum Research Institute) and **Dr. Nesma Maher** (Botany Department, Faculty of Science, Ain Shams University) for their kind help.

Thanks to the drinking and sewage water treatment station in Al-Gabal Al-Asfar, Cairo, Egypt, for their kindness to work in the station and their continuous support.

Sincere thanks offered to all staff members of Physiology unit, Botany Department, Faculty of Science, Ain Shams University.

Abstract

Name: Zahraa Salah Eldin Taha Mohamed

Title: Evaluating the Properties of Biofuel from Seed Cakes of

Jatropha curcas L.

Degree: M.Sc. Degree in Science in Botany (Plant Physiology)

Submitted to: Botany Department, Faculty of Science, Ain Shams University

This study aims to invest the value of the seed cakes of Jatropha curcas L. (waste by-products produced after oil extraction) by their applications in bioethanol production and removal of methylene blue dye (MB) as well as hexavalent chromium Cr (VI) from physiological contaminated The biochemical wastewater. composition of Jatropha curcas L. leaves and seed cakes was elevated via irrigation by the nutrient rich treated sewage water, sewage water + sludge and sewage water + sludge sprayed by different concentrations of chlorocholine chloride (cycocel or abbreviated as CCC). At the same time this study might be considered as a stepping stone for the solution of the huge amount of treated sewage water that lost daily at the drinking and sewage water treatment station in Al-Gabal Al-Asfar, Cairo, Egypt. The leaves and seed cakes were collected from the different irrigation treatments: tap water, sewage water, sewage water + sludge, sewage water + sludge sprayed with: tap water and different concentrations of cycocel. Results of the leaves showed that irrigation by sewage water and

sewage water + sludge have successfully increased the levels of photosynthetic pigments [chlorophyll (a), chlorophyll (b) and carotenoids], carbohydrates [total soluble sugars, polysaccharides and cellulose], total soluble protein, total free amino acids, proline, total phenol and lignin contents in addition to the activity levels of antioxidant enzymes [super oxide dismutase (SOD), catalase (CAT), poly phenol oxidase (PPO) and peroxidase (POX)]. Generally, the fractions of carbohydrates [total soluble estimated polysaccharides, cellulose and hemicellulose], total soluble protein, total free amino acids, proline and total phenol in addition to lignin contents have been also increased in seed cakes under irrigation by sewage water and sewage water + sludge. Results of leaves were inversely proportional to cycocel concentrations and vice versa in seed cakes.

In addition, irrigation of *Jatropha curcas* with sewage water and sewage water + sludge have produced higher ethanol quantities (36.22 and 40.63 g/100g) after fermentation of the seed cake hydrolysates by *Candida tropicalis* (Y-26). In respect to cycocel spraying, the maximum ethanol concentration (43.94 g/100g) was achieved from *Jatropha curcas* seed cake irrigated with cycocel at a concentration of 300 ppm after fermentation of the hydrolysates by *Candida tropicalis* (Y-26).

A preliminary screening experiment in dye and heavy metal removal resulted in; *Jatropha curcas* seed cake irrigated with sewage

water has achieved the highest removal efficiencies of 78.8% and 41% for MB and Cr (VI), respectively. The optimum factors for methylene blue (MB) removal efficiency were recorded as: biosorbent (BM), the selected *Jatropha curcas* seed cake, dose 15 g/l, conc. 50 ppm of MB, pH 7 and contact time 4h. While, the optimum factors for Cr (VI) removal efficiency were, BM dose 5 g/l, conc. 50 ppm of Cr (VI), pH 5 and contact time 2h. The adsorption of MB and Cr (VI) follows Langmuir isotherm and the pseudo-second order model.

Keywords:

Jatropha curcas, Seed Cake, Bioethanol, Methylene Blue, Hexavalent Chromium, Sewage Water, Sewage Sludge, Cycocel.

LIST OF CONTENTS

Title	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	vi
1. PREFACE	1
2. AIM OF WORK	4
3. LITERATURE REVIEW	5
3.1. Botanical Description	5
3.2. The Strategic Economic Importance of Jatropha curcas plants	7
3.3. Ecology of Jatropha curcas plants	8
3.4. Cultivation and Propagation	8
3.5. The Potentials of <i>Jatropha curcas</i> Plantations in	10
Egypt	
3.6. Bio Chemical Composition of <i>Jatropha curcas</i>	11
plants	
i. Photosynthetic pigments	11
ii. Carbohydrates	12

iii. Protein	15
iv. Amino Acids	16
v. Phenolic Compounds	18
vi. Enzymes	31
3.7. Global Developments in Energy and Fransportation Fuels	20
3.8. Power Generation through Bioethanol	24
3.9. Bioethanol Production from <i>Jatropha curcas</i> Seed Cake	24
3.10. Global Water Challenges and Threats	27
2.11. Water Challenges in Egypt	27
3.12. Water Pollution	28
3.12.1. Heavy metals	28
Hexavalent chromium [Cr (VI)]	28
3.12.2. Dyes	29
Methylene Blue (MB)	29
3.13. Waste Water Treatment Methods	29
3.13.1. Conventional treatment methods	30
3.13.2. Non-conventional treatment methods	30
Bio-sorption	30
A. Biosorbent types	31
B. Biosorption mechanism	32
C. Advantages of Biosorption	32

D. Disadvantages of Biosorption	33
E. Factors Affecting Biosorption Process	33
3.14. The Potential of Jatropha curcas Seed Cake in	35
Heavy Metal and Methylene Blue (MB) Dye Removal	
4. MATERIALS AND METHODS	37
4.1. Part I: Physiological Analysis	37
4.1.1. Materials	37
4.1.2. Methods	37
Extraction and Estimation of Photosynthetic Pigments	37
Extraction and Estimation of Carbohydrates	38
Extraction and Determination of Cellulose and Hemicellulose	39
Extraction and Estimation of Total Soluble Proteins	40
Extraction and Estimation of Total Free Amino Acids	41
Extraction and Estimation of Proline	42
Extraction and Determination of Total Phenols	43
Extraction and Determination of Lignin	43
Extraction and Assaying the Activity of Certain	44
Antioxidant Enzymes	

4.2. Part II: Bioethanol Production	47
4.2.1. Materials	47
4.2.2. Methods	49
I. Pretreatment	49
II. Acid Hydrolysis	49
III. Fermentation	50
IV. Analytical Determination	50
4.3. Part III: Methylene Blue and Chromium (Cr VI) Removal	52
4.3.1. Materials	52
4.3.2. Methods	53
Preliminary Experiment	53
Optimization Process	53
Equilibrium Studies	55
Kinetics Studies	56
FT-IR Analysis of Bio-sorbent Material	57
5. EXPERIMENTAL RESULTS	59
Part I: Physiological Results	59
Part II: Bioethanol Production	89
Part III: Methylene Blue (MB) and Chromium (Cr VI) Ions Removal Efficiency	97
6. DISCUSSION	117
SUMMARY	161

. RECOMMENDATION	167	
8. REFERENCES	168	
ARABIC SUMMARY		