

بسم الله الرحمن الرحيم

 $\infty \infty \infty$

تم رفع هذه الرسالة بواسطة / هناء محمد علي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

		4534		
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	(m) (m)		00	ملاحظات:
		حامعتهت		
	since	1992	1.53	

بركات وتكنولوجياراه

Cairo University Faculty of Veterinary Medicine

Detection of bacteria and fungi associated with canine otitis

A thesis submitted by:

Zeinab Hassan AlSaiid Saleh AlKady

(Bachelor's degree of Veterinary Science 2014)

Faculty of Veterinary Medicine

Cairo University

For

Master Degree of Veterinary Medical Science

(Microbiology)

Under the Supervision of

Prof. Dr. Mona Ibrahim Hassan El-Enbaawy

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Assistant Prof. Dr. Mohammed Said Mostafa Amer

Assistant Professor of Surgery

Anaesthesiology and Radiology,

Faculty of Veterinary Medicine,

Cairo University

Cairo University Faculty of Veterinary Medicine

Supervision Sheet

Prof. Dr. Mona Ibrahim Hassan El-Enbaawy

Professor of Microbiology Faculty of Veterinary Medicine, Cairo University

Assistant Prof. Dr. Mohammed Said Mostafa Amer

Assistant Professor of Surgery,

Anaesthesiology and Radiology

Faculty of Veterinary Medicine,

Cairo University

2022

Cairo University

Faculty of Veterinary medicine

Microbiology Department

Name: Zeinab Hassan AlSaiid Saleh.

Date of birth: 20 2 1993.

Degree: Master degree in Veterinary Medical Science

Specialization: Microbiology

Title of thesis: Detection of bacteria and fungi associated with

canine otitis

Supervisors:

Professor Dr. Mona Ibrahim Hassan El-Enbaawy.

Professor of Microbiology, Department of Microbiology, Faculty of Veterinary medicine, Cairo University.

Assistant Professor Dr. Mohammed Said Mostafa Amer.

Assistant professor of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary medicine, Cairo University.

Abstract

Otitis externa (OE) is the inflammation of external auditory canal, outside the tympanic membrane. The present study aimed to clarify bacteriological and mycological pathogens associated with canine otitis. This study was carried on forty-four dogs suffering from otitis belonged to 8 breeds (Golden Retriever, German shepherd, Cocker spaniel, Siberian husky, Labrador retriever, Rottweiler and Pekinese and Griffon). These dogs of different age groups less than 1 year, 1-5 years

and more than 5 years and of both sexes. On bacterial culture, Staphylococcus S. aureus) (44.11%),aureus Staphylococcus epidermidis (S. epidermidis) (22.05%), Klebsiella pneumoniae (K. pneumoniae) (16.17%), Escherichia coli (E. coli) (14.7%), and Pseudomonas aeruginosa (P. aeruginosa) (2.9%) represented the bacterial isolates. S. aureus was the most commonly isolated bacteria. All bacterial isolates were subjected to antimicrobial sensitivity tests by using 20 antibacterial agents. The antibiogram assay showed that all bacterial isolates were sensitive to Piperacillin / tazobactam and imipenem / meropeneneum. The yeast isolates represented Malassezia pachydermatis (M. pachydermatis) (9.1%), Candida albicans (C. albicans) (2.27%) and Aspergillus niger (A. niger) (6.8%). All yeast isolates were subjected to antifungal susceptibility testing and confirmed by PCR. The antifungal susceptibility showed sensitivity to all discs used except two isolate of M. pachydermatis were resistant to fluconazole (FLC) and C. albicans was intermediate to itraconazole (IT). Conclusively to control OE, antibiogram should be applied on isolates to guide the veterinarians to choose the most effective therapeutic regimen that reduce the risk of resistance is recommended.

Key words: Antibiogram, bacteria, otitis externa, PCR.

Dedication

I would extend my sincere thanks to my father and my mother, for their care and help. Their constant support behind makes me concentrate on my study and work, and also own enough courage to accept challenges and solve problems.

Acknowledgments

First of all, I would like to express my prayerful gratitude and great thanks to the merciful **ALLAH** whose help me always seek, and without his will, I shall achieve nothing.

I wish to present my respect, deepest gratitude and highest appreciation to **Prof. Dr. Mona Ibrahim Hassan EL-Enbaawy** professor of Microbiology, Faculty of Veterinary Medicine, Cairo University for planning this research program, sincere supervision, wise scientific advices and encouragement during this study which made this thesis in the best way.

I am extremely grateful to **Dr. Mohammed said Mostafa Amer** Assistant professor of Surgery, Anaesthesiology and Radiology, Faculty of Veterinary Medicine, Cairo University for his valuable advices, continuous encouragement and constructive criticism. He offered continuous help and support.

List of contents

Items	Page
Chapter (1) Introduction	1
Chapter (2) Review of literature	4
2.1 Canine otitis	4
2.2 Causes of canine otitis externa in dogs	8
2.3 Bacteria causing otitis externa	9
2.4 Fungal causing external otitis	12
2.4.1 Candida albicans	13
2.4.2 Malassezia spp.	14
2.4.3 Molecular identification of <i>M. pachydermatis</i> and	17
C. albicans	
2.5 Mixed (bacteria and fungi) infection of OE	20
2.6 Antimicrobial susceptibility testing	22
Chapter (3) Papers	
3.1 Bacteriological studies on otitis externa in dogs	28
and antibiotic susceptibility testing on the recovered	
isolates	
3.2 Mycotic otitis externa in dogs: analysis and	38
antibiogram profiles of the identified yeasts	
Chapter (4) Discussion	55
Chapter (5) Conclusion and Recommendations	70
Chapter (6) Summery	72
Chapter (7) References	75
Arabic summery	
Arabic abstract	

List of tables

NO.	Title	Page
1	Causes of otitis in the dog	9
2	Common organisms found in normal and diseased ears	21
Paper ((1)	
1	Incidence of bacteria associated with otitis externa in dogs in relation to age	31
2	The susceptibility testing of bacterial isolates recovered from inflamed external ears of dogs.	32
Paper ((2)	
1	Primer's sequence and the amplified product	41
2	Cycling conditions of the used primers	42
3	Incidence of yeasts and mixed infection associated with otitis externa in dogs in relation to age	43
4	The antibiogram profiles of <i>M. pachydermatis</i> and <i>C. albicans</i> isolated from dogs with OE	44

List of figures

NO.	Title	Page
1	Dogs breed	6
2	Ear Structure in Dogs.	8
3	The percentage of cases of otitis externa diagnosed each season (from 2008 to 2013) that were associated with bacterial, yeast, or mixed (bacterial and yeast) infections. Values are expressed as percentages due to the varying number of cases each year.	22
4	 (A) A 25-μg fluconazole disk on a lawn of 104 CFU of <i>C. albicans</i> after 24 h of incubation. (B) A 50-μg fluconazole disk on a lawn of 104 CFU of <i>C. albicans</i> after 48 h of incubation. Inhibitory zone diameters were measured at the transitional point where growth abruptly decreased (interior edges of bars), as determined by a marked reduction in colony sizes. 	27
Paper (Agarose Gel electrophoresis showing the specific product of M. pachydermatis (140bp) of DNA extracted from yeast isolated from Cocker spaniel dogs aging 1-5 years Lane M: Molecular size marker (1000bp). Lanes 1-4 positive M. pachydermatis. Lane N: negative control. Lane P: positive control.	44
2	Showing the specific PCR product of <i>C. albicans</i> . Lane L: Molecular size marker(1000bp), Lane S: positive <i>C. albicans</i> , (109 bp), Lane N: Negative control and Lane P: positive control	45

3	Green coloration of <i>C. albicans</i> colonies on <i>Candida</i> chromogenic agar	45
4	C. albicans germ tube formation	46
5	Chlamydospore and pseudohyphae on rice agar	46
6	M. pachydermatis Gram +ve foot print shape microscopically	46

List of abbreviations

Abbreviation	Full name
A. fumigatus	Aspergillus fumigatus
AK	Amikacin
AMC	Amoxicillin Clavulanate
A. niger	Aspergillus niger
AP	Amphotericin B
API	Analytical profile index
AZM	Azithromycin
Вр	Base pair
C. albicans	Candida albicans
CAZ	Ceftazidime
CC	Clotrinazole
CD	Clindamycin
CI	Confidence interval
CIP	Ciprofloxacin
C. laurentii	Cryptococcus laurentii
CLR	Clarithromycin
CLSI	Clinical Laboratory Standard Institute

CN	Gentamycin
C. parapsilosis	Candida parapsilosis
CRO	Ceftriaxone
C. tropicalis	Candida tropicalis
CTX	Cefotaxime
DNA	Deoxyribonucleic acid
E. coli	Escherichia coli
E test	Epsilometer
FLC	Fluconazole
FOX	Cefoxitin
IT	Itraconazole
ITS	Internal transcribed spacer
K. pneumoniae	Klebsiella pneumoniae
KT	Ketoconazole
LEV	Levofloxacin
LNZ	Linezolid
LSN	Large subunit
MALDI	Matrix assisted lase desorption/ionization
MHA	Mueller Hinton agar
MIC	Minimal inhibitory concentration

M. pachydermatis	Malassezia pachydermatis
MSA	Mannitol salt agar
OE	Otitis externa
OFX	Ofloxacin
OM	Otitis media
P. aeuroginosa	Pseudomonas aeuroginosa
PBS	Phosphate buffered saline
PCR	Polymerase chain reaction
P. mirabilis	Proteus mirabilis
qPCR	Quantitative polymerase chain reaction
rDNA	Ribosomal deoxyribonucleic acid
RFLP	Restriction fragment length polymorphism
RPMI	Roswell Park memorial institute
rRNA	Ribosomal ribonucleic acid
S. agalactiae	Streptococcus agalactiae
S. aureus	Staphylococcus aureus
S. canis	Streptococcus canis
SDA	Sabouraud's dextrose agar
S. epidermidis	Staphylococcus epidermidis
S. intermidius	Staphylococcus intermidius

S. pseudointermedius	Staphylococcus pseudointermedius
Spp	Species
SXT	Trimethoprim/Sulfamethoxazole
T. cutaneum	Trichosporon cutaneum
TZP	Piperacillin/Tazobactam
Ml	Micro liter
VA	Vancomycin
VRC	Voriconazole
YPD	Yeast extract peptone dextrose