

بسم الله الرحمن الرحيم

00000

تم رفع هذه الرسالة بواسطة / حسام الدين محمد مغربي

بقسم التوثيق الإلكتروني بمركز الشبكات وتكنولوجيا المعلومات دون أدنى مسئولية عن محتوى هذه الرسالة.

	ملاحظات:
	s and no see to be the control of the control
خامتهانی میندانی AIN SHAMS UNIVERSITY	
since 1992	<i>f</i>

تربيحات وتكنوبوجبارها

Department: Physics

Comparative study of different radiation therapy techniques in large volume head and neck tumors

A Thesis submitted in Partial Fulfillment of the requirement for the Master Degree in Science in physics

Ву

Doaa Raafat Ali Elsayed

Supervised by

Prof. Dr. Abdelsattar Mohamed Sallam

Professor of Biophysics, Physics Department, Faculty of science, Ain shams University

Prof. Dr. El-Sayed Mahmoud El-Sayed

Professor of Biophysics, Physics Department, Faculty of science, Ain shams University

Prof. Dr. Amin El-Sayed Amin

Professor of Radiation Physics, Radiation Oncology Department, Faculty of Medicine, Ain-Shams University

Year (2021)

Master Degree Approval sheet

Comparative study of different radiation therapy techniques in large volume head and neck tumors

Submitted by/ Doaa Raafat Ali Elsayed

Degree: Master of Science degree in physics

Supervisors:

Prof. Dr. Abdelsattar Mohamed Sallam

Professor of Biophysics, Physics Department, Faculty of science, Ain shams University

Prof. Dr. El-Sayed Mahmoud El-Sayed

Professor of Biophysics, Physics Department, Faculty of science, Ain shams University

Prof. Dr. Amin El-Sayed Amin

Professor of Radiation Physics, Radiation Oncology Department, Faculty of Medicine, Ain-Shams University

Examiners Committee:

Prof. Dr. Abdelsattar Mohamed Sallam

Professor of Biophysics, Physics Department, Faculty of science, Ain shams University

Prof. Dr. El-Sayed Mahmoud El-Sayed

Professor of Biophysics, Physics Department, Faculty of science, Ain shams University

Prof. Dr. Ehab Maarouf Attallah

Professor of Medical physics, National cancer institute, Cairo University

Prof. Dr. Khaled Mohamed El-Shahat

Professor of Medical physics, Medicine Faculty, Al-Azhar University

Post graduate studies:

The research was approved on	Approval stamp.
1 1	
Faculty council approval	University council approval
/ /	/ /

Researcher data

Name: Doaa Raafat Ali Elsayed

Degree: Master

Department: Physics

Faculty: Science

University: Ain -Shams

Graduation date: 2007

Registration: 2015

ACKNOWLEDGEMENT

First and foremost, my deepest praises are due to Almighty "ALLAH" who enabled me to finish this piece of work appropriately.

I would like to express my deep thanks and gratitude to **Prof. Dr. Abdelsattar**Mohamed Sallam Professor of Biophysics, Physics Department, Faculty of
Science, Ain Shams University, for his continuous meticulous supervision apart
from his spiritual support that paved the way to the achievement of this work.

I feel deeply indebted to **Prof. Dr. El-Sayed Mahmoud El-Sayed** Professor of Biophysics, Physics Department, Faculty of Science, Ain Shams University for his precious valuable advices, close supervision and remarkable advices removing any obstacle.

I would like to express my deep thanks to **Prof. Dr. Amin El-Sayed Amin** Professor of Radiation physics, Faculty of medicine, Ain Shams University for his ultimate scientific help and continuous unlimited support throughout my work, really had the pleasure to work with him.

I would like to express my deep thanks to our physics team for their unlimited help.

Finally, I would like to express my infinite gratitude and my deepest appreciation to my family, all staff members and to my colleagues at oncology department for their support.

Contents

Subject			
Acknowledgement			
List of abbreviation	I		
List of figures	III		
List of charts	IV		
List of tables	IV		
Abstract	V		
Chapter (1)			
Introduction and literature review			
1.1 Introduction	2		
1.2 Literature review	5		
1.3 Aim of work	9		
Chapter (2)	I		
Theoretical aspects			
2.1 Conventional treatment planning	11		
2.2 Conformal radiation therapy	12		
2.2.1 Conformal radiation therapy history			
2.2.2 Three dimensional treatment planning			
2.2.3 Patient simulation			
2.3 Intensity-modulated radiation therapy			
2.4 Volumetric Modulated Arc Therapy			
2.5 Target volumes and organs of interest definition			
2.5.1 Target volumes			
2.5.2 Organs at risk			
2.6 Treatment planning system			
2.7 Plan evaluation methods			

2.7.1 Isodose Curves	18		
2.7.2 Dose Volume Histograms (DVH)	19		
2.7.3 Dose statistics	20		
Chapter (3)			
Materials and methods			
3.1 Target volumes and dose fractionation	22		
3.2 Materials	22		
3.2.1 Fixation system	22		
3.2.2 Treatment planning system (TPS)	23		
3.2.3 Linear accelerator system	23		
3.3 Method	23		
3.3.1 Plan of work	23		
3.4 Treatment techniques	24		
3.4.1 IMRT plan	24		
3.4.2 VMAT plan	25		
3.5 Analyzed parameters for comparison	26		
3.5.1 Target homogeneity and coverage indices	26		
3.5.2 Monitor units	26		
3.5.3 Organs at risk and remaining volume at risk	26		
Chapter (4)			
Results and discussion			
4.1 Plan evaluation comparison between the two techniques	29		
4.1.1 Dose volume histogram	29		
4.1.2 Target dose coverage	29		
4.1.3 Target volumes dose statistics	31		
4.1.4 Normal tissues dose statistics	34		
4.2 Conclusion	44		
References	45		

List of abbreviation

3DCRT	Three dimension conformal radiotherapy		
AAA	Anisotropic analytical algorithm		
AMAT	Aperture modulated arc therapy		
AMCBT	Arc-modulated cone beam therapy		
AMRT	Arc-modulated radiotherapy		
AVG	Average		
BEV	Beam eye view		
CF	Conformity function		
CI	Conformity index		
CN	Conformity number		
CT	Computed tomography		
CTV	Clinical target volume		
DICOM	Digital imaging and communications in medicine		
Dmax	Maximum dose		
DRR	Digital reconstructed radiograph		
DVH	Dose–volume histogram		
GI	Dose gradient index		
GTV	Gross tumor volume		

HNC	Head and neck cancer		
НІ	Homogeneity index		
ICRU	International commission on radiation units		
IMAT	Intensity modulated arc therapy		
IMRT	Intensity-modulated radiation therapy		
ITV	Internal Target Volume		
MLC	Multi-leaf collimator		
MRI	Magnetic resonance imaging		
MU	Monitor unit		
OAR	Organ at risk		
PET	Positron emission tomography		
PRV	Planning organ at risk volume		
PTV	Planning target volume		
QI	Quality index		
RVR	Remaining volume at risk		
SSD	Source to surface distance		
SWAT	Sweeping-window arc therapy		
TPS	Treatment planning system		
VMAT	Volumetric modulated arc therapy		

List of figures

Figure	Title	Page
2.1	Head and neck cancer types	11
2.2	Conventional radiation therapies planning for head and neck	11
2.3	Conformal radiotherapy beam eye view	12
2.4	The principles of intensity modulated radiation therapy	14
2.5	Sequence of control points diagram	15
2.6	ICRU 50 target and organ at risk volumes	16
2.7	Plan isodose curves in CT slice	18
2.8	The cumulative and differential DVH for plan evaluation	19
3.1	Lateral view of target volumes.	22
3.2	Fixation systems by thermoplastic mask in head and neck	22
3.3	The TrueBeam linear accelerator machine	23
3.4	IMRT plan geometry	24
3.5	VMAT plan geometry	25
3.6	Remaining volume at risk contouring	27
4.1	DVH comparison between VMAT and IMRT	29
4.2	Comparison of the target volumes dose distribution	30

List of chart

Chart	Title	Page
4.1	Comparison between VMAT and IMRT in HI.	32
4.2	Comparison between VMAT and IMRT in (CI, CN and GI).	33
4.3	Comparison between VMAT and IMRT in MU.	33
4.4	Variance percentage of the two techniques in HI, CI, CN, GI and MU	34
4.5	Comparison between VMAT and IMRT in OAR.	40
4.6	Comparison between VMAT and IMRT in RVR	42
4.7	Variance percentage in RVR.	42
4.8	Variance percentage in OAR	43

List of tables

Table	Title	Page
1.1	Cancer patients received radiotherapy percentage	3
3.1	IMRT plan geometry	24
3.2	VMAT plan geometry	25
3.3	Organs at risk tolerance limits	27
4.1	Target volumes HI for all cases	31
4.2	PTV 70Gy CI, CN and GI	32
4.3	Monitor unit comparison	33
4.4	Brainstem, optic chiasm, optic nerve and spinal cord comparison	36
4.5	Esophagus, lens and eye comparison	37
4.6	Mandible, larynx, esophagus and cochlea comparison	38
4.7	Oral cavity, parotid and eye comparison	39
4.8	Low dose effect (RVR) comparison	41

ABSTRACT

The most used methods for head and neck cancer treatment are surgery, chemotherapy and radiotherapy.

The radiation therapy aims to deliver a prescribed dose to target volumes, to kill the tumour cells, with a good protection of organs at risk OAR.

More than half of all patients assessed to receive radiotherapy during their treatment.

Radical radiation therapy is indicated either in the primary treatment of head and neck cancer with concurrent chemotherapy for locally advanced disease or in the postoperative setting with or without concurrent chemotherapy.

Radiation therapy for advanced head and neck cancer has developed from the three dimensional conformal radiotherapy 3DCRT to intensity modulated radiation therapy IMRT and Volumetric modulated arc therapy VMAT.

The aim of present work is to compare treatment planning for a large volume head and neck cancer patients using IMRT and VMAT techniques to evaluate and find out optimal technique for treating large volume head and neck tumor.

Eleven patients with advanced head and neck tumors that previously treated were selected for the planning study. The patients are planned using the two different techniques (IMRT and VMAT) and optimized to evaluate highly conformal target coverage and sparing OAR.

Standard fractionation is 33 fractions with 5 fractions weekly, the prescribed doses70Gy, 59.4Gy and 54Gy for the high, intermediate and low risk targets by simultaneous integrated boost.

Evaluation of plan was depend on target dose coverage, homogeneity, conformity and gradient, dose statistics of the OARs, total monitor units and the remaining volume at risk RVR.

The study showed that the two techniques are equal for target dose conformity index (0.94), and comparable in homogeneity index (0.91,0.93) for VMAT and IMRT respectively, while VMAT is more superior clearly in CN and GI (0.76, 44) than (0.68, 55) for IMRT. Furthermore VMAT has an advantage over IMRT in the most of OAR

For the total monitor unit, IMRT is considered as a second choice, which gives more than three times monitor units for VMAT.

However for low dose effect RVR, VMAT has the upper hand, that the average volume of **RVR** that received 15Gy, 10Gy and 5Gy are (4327, 5281 and 6703cc) and 1019cGy mean dose in **VMAT** techniques, while in **IMRT** are (4435, 5311 and 6543cc) and 1051cGy mean dose.

Finally Results of the dosimetric comparison between both techniques showed that VMAT had a priority than IMRT in a lot of comparison points especially the time on the machine, that make VMAT is the first choice in the treatment plan selection.

Chapter (I)

Introduction and literature review

Chapter (I) Introduction and literature review

1.1 Introduction

Radiation oncology is a human medicine which interested in the knowledge on the prevention, causes and treatment of cancer and other diseases need a special expertise in the therapeutic applications of ionizing radiation.

Radiation therapy is a clinical application using the ionizing radiations in the treatment of patients with malignant tumors and sometimes benign diseases. Radiation therapy aims to deliver a precisely dose of irradiation to a specific tumor volume with minimal damage to surrounding healthy tissue.

In addition to radical treatment radiation therapy plays an important role in palliative cancer management by prevention of symptoms of the disease and decreasing pain. (Halperin et al. 2018)

Tobacco and alcohol abuse and human papillomavirus infection are two primary causes of head and neck cancer (**HNC**). It was commonly spreads in some countries around the world, the estimated percentage of **HNC** is 4% of malignancies tumour.

The clinical management of **HNC** needs precise diagnosis, accurate staging and a standardized multidisciplinary treatment approach. (Xie et al. 2017)

Surgery has the longer history, which the primary method of treatment in many tumour types that non-metastatic.

Radiotherapy is a good alternative to surgery for the long term control of many tumours of the head and neck, lung, cervix, bladder, prostate and skin that can achieves a reasonable tumour control with good cosmetic results.

Also many patients received valuable palliation by radiation. Chemotherapy is the third most important treatment type at the present time. More than half of all patients assessed to receive radiotherapy during their treatment. (Joiner et al. 2009)

The percentage of cancer patients who should receive radiotherapy during treatment is representing in (Table 1.1). (Delaney et al. 2005)

 Table 1.1 Percentage of cancer patients received radiotherapy (Delaney et al. 2005)

Tumour type	Proportion of all cancer (%)	Proportion of patients receiving radiotherapy (%)	patients receiving radiotherapy (% of all cancers)
Breast	13	83	10.8
Lung	10	76	7.6
Melanoma	11	23	2.5
Prostate	12	60	7.2
Gynecological	5	35	1.8
Colon	9	14	1.3
Rectum	5	61	3.1
Head and neck	4	78	3.1
Gall bladder	1	13	0.1
Liver	1	0	0
Esophageal	1	80	0.8
Stomach	2	68	1.4
Pancreas	2	57	1.1
Lymphoma	4	65	2.6
Leukemia	3	4	0.1
Myeloma	1	38	0.4
Central nervous system	2	92	1.8
Renal	3	27	0.8
Bladder	3	58	1.7
Testis	1	49	0.5
Thyroid	1	10	0.1
Unknown primary	4	61	2.4
Other	2	50	1
Total	100	-	52.3