New Modalities in the management of Traumatic Intracranial Injury
Ramadan Abd El-Aziz Ramadan Abu Elnasr;
Abstract
Traumatic brain injury (TBI), also known as intracranial injury, occurs when an external force traumatically injures the brain. TBI can be classified based on severity, mechanism (closed or penetrating head injury), or other features (e.g., occurring in a specific location or over a widespread area). Head injury usually refers to TBI, but is a broader category because it can involve damage to structures other than the brain, such as the scalp and skull.
Brain injuries can be classified into mild, moderate, and severe categories. The Glasgow Coma Scale (GCS), the most commonly used system for classifying TBI severity, grades a person's level of consciousness on a scale of 3–15 based on verbal, motor, and eye-opening reactions to stimuli. In general, it is agreed that a TBI with a GCS of 13 or above is mild, 9–12 is moderate, and 8 or below is severe. Similar systems exist for young children. However, the GCS grading system has limited ability to predict outcomes.
Symptoms are dependent on the type of TBI (diffuse or focal) and the part of the brain that is affected. Unconsciousness tends to last longer for people with injuries on the left side of the brain than for those with injuries on the right. Symptoms are also dependent on the injury's severity.
Diagnosis is suspected based on lesion circumstances and clinical evidence, most prominently a neurological examination, and assigning Glasgow Coma Score. Neuroimaging helps in determining the diagnosis and prognosis and in deciding what treatment to give.
The preferred radiologic test in the emergency setting is computed tomography (CT) it is quick, accurate, and widely available. Follow up CT scans may be performed later to determine whether the injury has progressed.
Magnetic resonance imaging (MRI) can show more detail than CT, and can add information about expected outcome in the long term. It is more useful than CT for detecting injury characteristics such as diffuse axonal injury in the longer term. However, MRI is not used in the emergency setting for reasons including its relative inefficacy in detecting bleeds and fractures.
Angiography used to detect blood vessel pathology when risk factors such as penetrating head trauma are involved.
It is important to begin emergency treatment within the so-called "golden hour" following the injury. People with moderate to severe injuries are likely to receive treatment in an intensive care unit followed by a neurosurgical ward. Treatment depends on the recovery stage of the patient. In the acute stage the primary aim of the medical personnel is to stabilize the patient and focus on preventing further injury because little can be done to reverse the initial damage caused by trauma.
Endotracheal intubation and mechanical ventilation may be used to ensure proper oxygen supply and provide a secure airway. Hypotension which has a devastating outcome in TBI, can be prevented by giving intravenous fluids to maintain a normal blood pressure.Body temperature is carefully regulated because increased temperature raises the brain's metabolic needs, potentially depriving it of nutrients. Seizures are common. While they can be treated with benzodiazepines, these drugs are used carefully because they can depress breathing and lower blood pressure.
Surgery can be performed on mass lesions or to eliminate objects that have penetrated the brain. Mass lesions such as contusions or hematomas causing a significant mass effect (shift of intracranial structures) are considered emergencies and are removed surgically. Craniotomy, in which part of the skull is removed, may be needed to remove pieces of fractured skull or objects embedded in the brain. Decompressive craniectomy (DC) is performed routinely in the very short period following TBI during operations to treat hematomas; part of the skull is removed temporarily . DC performed hours or days after TBI in order to control high intracranial pressures.
Prognosis worsens with the severity of injury. Most TBIs are mild and do not cause permanent or long-term disability; however, all severity levels of TBI have the potential to cause significant, long-lasting disability. Permanent disability is thought to occur in 10% of mild injuries, 66% of moderate injuries, and 100% of severe injuries. Most mild TBI is completely resolved within three weeks, and almost all people with mild TBI are able to live independently and return to the jobs they had before the injury.
Brain injuries can be classified into mild, moderate, and severe categories. The Glasgow Coma Scale (GCS), the most commonly used system for classifying TBI severity, grades a person's level of consciousness on a scale of 3–15 based on verbal, motor, and eye-opening reactions to stimuli. In general, it is agreed that a TBI with a GCS of 13 or above is mild, 9–12 is moderate, and 8 or below is severe. Similar systems exist for young children. However, the GCS grading system has limited ability to predict outcomes.
Symptoms are dependent on the type of TBI (diffuse or focal) and the part of the brain that is affected. Unconsciousness tends to last longer for people with injuries on the left side of the brain than for those with injuries on the right. Symptoms are also dependent on the injury's severity.
Diagnosis is suspected based on lesion circumstances and clinical evidence, most prominently a neurological examination, and assigning Glasgow Coma Score. Neuroimaging helps in determining the diagnosis and prognosis and in deciding what treatment to give.
The preferred radiologic test in the emergency setting is computed tomography (CT) it is quick, accurate, and widely available. Follow up CT scans may be performed later to determine whether the injury has progressed.
Magnetic resonance imaging (MRI) can show more detail than CT, and can add information about expected outcome in the long term. It is more useful than CT for detecting injury characteristics such as diffuse axonal injury in the longer term. However, MRI is not used in the emergency setting for reasons including its relative inefficacy in detecting bleeds and fractures.
Angiography used to detect blood vessel pathology when risk factors such as penetrating head trauma are involved.
It is important to begin emergency treatment within the so-called "golden hour" following the injury. People with moderate to severe injuries are likely to receive treatment in an intensive care unit followed by a neurosurgical ward. Treatment depends on the recovery stage of the patient. In the acute stage the primary aim of the medical personnel is to stabilize the patient and focus on preventing further injury because little can be done to reverse the initial damage caused by trauma.
Endotracheal intubation and mechanical ventilation may be used to ensure proper oxygen supply and provide a secure airway. Hypotension which has a devastating outcome in TBI, can be prevented by giving intravenous fluids to maintain a normal blood pressure.Body temperature is carefully regulated because increased temperature raises the brain's metabolic needs, potentially depriving it of nutrients. Seizures are common. While they can be treated with benzodiazepines, these drugs are used carefully because they can depress breathing and lower blood pressure.
Surgery can be performed on mass lesions or to eliminate objects that have penetrated the brain. Mass lesions such as contusions or hematomas causing a significant mass effect (shift of intracranial structures) are considered emergencies and are removed surgically. Craniotomy, in which part of the skull is removed, may be needed to remove pieces of fractured skull or objects embedded in the brain. Decompressive craniectomy (DC) is performed routinely in the very short period following TBI during operations to treat hematomas; part of the skull is removed temporarily . DC performed hours or days after TBI in order to control high intracranial pressures.
Prognosis worsens with the severity of injury. Most TBIs are mild and do not cause permanent or long-term disability; however, all severity levels of TBI have the potential to cause significant, long-lasting disability. Permanent disability is thought to occur in 10% of mild injuries, 66% of moderate injuries, and 100% of severe injuries. Most mild TBI is completely resolved within three weeks, and almost all people with mild TBI are able to live independently and return to the jobs they had before the injury.
Other data
| Title | New Modalities in the management of Traumatic Intracranial Injury | Other Titles | الأساليب الحديثة لعلاج إصابات المخ | Authors | Ramadan Abd El-Aziz Ramadan Abu Elnasr | Issue Date | 2015 |
Recommend this item
Similar Items from Core Recommender Database
Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.