Bifurcations of Liouville tori of a two fixed center problem

El-Sabaa, FM; Hosny M.; Zakria, SK;

Abstract


A complete description of the real phase topology of a two fixed center problem is introduced and studied. Moreover, all generic bifurcations of Liouville tori are determined theoretically and the periodic solution is presented. At the end of this paper, the phase portrait is studied.


Other data

Title Bifurcations of Liouville tori of a two fixed center problem
Authors El-Sabaa, FM; Hosny M. ; Zakria, SK
Keywords Hamilton-Jacobi's equations;Bifurcations of Liouville tori;Topology of the level sets;Momentum maps;Periodic solution;Elliptic functions;Phase portrait;GENERALIZED PROBLEM;INTEGRABLE SYSTEMS;SPHERE;MOTION
Issue Date 28-Mar-2018
Publisher SPRINGER
Journal Astrophysics and Space Science 
Volume 363
ISSN 0004-640X
DOI 10.1007/s10509-018-3297-y
Scopus ID 2-s2.0-85044513618
Web of science ID WOS:000429130000017

Attached Files

File Description SizeFormat Existing users please Login
El-Sabaa2018_Article_BifurcationsOfLiouvilleToriOfA.pdf2.89 MBAdobe PDF    Request a copy
Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

Citations 4 in scopus
views 22 in Shams Scholar
downloads 4 in Shams Scholar


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.