Fractional dependence of the free energy of activation on the driving force of charge transfer in the quenching of the excited states of substituted phenanthroline homoleptic ruthenium(ii) complexes in aqueous medium

Akl, Hossam N.; Salah, Dina; Abdel-Samad, Hesham; Abdel Aziz, Ayman A.; Abdel-Shafi, Ayman;

Abstract


The photophysical characteristics of some homoleptic ruthenium(ii) phenanthroline derivatives are investigated in aqueous medium. The lifetimes of the excited 3MLCT state of the studied complexes were found to be very sensitive to the type of the substituents on the phenanthroline ligand and were found to increase from about 0.96 μs in case of the parent [Ru(Phen)3]2+ complex to 2.97 μs in case of [Ru(DPPhen)3]2+. The transient absorption spectra of the current set of complexes were studied also in aqueous medium. Quenching of the excited 3MLCT states of the studied complexes by molecular oxygen were studied and quenching rate constants were found to be in the range 1.02-4.83 × 109 M−1 s−1. Values of singlet oxygen quantum yields were found to be in the range 0.01 to 0.25, and the corresponding efficiencies of singlet oxygen thereby produced, fTΔ, were in the range 0.03-0.52. The mechanism by which the excited 3MLCT state is quenched by oxygen is discussed in light of the spin statistical factor rate constants and the competition between charge transfer and non-charge transfer quenching pathways. The partial charge transfer parameters, pCT, were obtained and found to be about 0.88 for all complexes except for complexes with fTΔ values lower than 0.25. The correlation of the activation free energies ΔG≠ of the exciplexes formation with the driving force for charge transfer, ΔGCET, gives a charge transfer character of the exciplexes of about 35.0%.


Other data

Title Fractional dependence of the free energy of activation on the driving force of charge transfer in the quenching of the excited states of substituted phenanthroline homoleptic ruthenium(ii) complexes in aqueous medium
Authors Akl, Hossam N.; Salah, Dina; Abdel-Samad, Hesham ; Abdel Aziz, Ayman A.; Abdel-Shafi, Ayman 
Issue Date 2-May-2023
Journal RSC Advances 
Volume 13
Issue 19
Start page 13314
End page 13323
ISSN 2046-2069
DOI 10.1039/d3ra01280h
Scopus ID 2-s2.0-85159115004

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

Citations 2 in scopus
views 23 in Shams Scholar


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.