Oscillation results for second-order mixed neutral integro-dynamic equations with damping and a nonpositive neutral term on time scales

Heba M. Arafa; Agwa, H. A.; Chatzarakis, G. E.; Abdel Naby, M.A.;

Abstract


In this work, we are concerned with studying a new class of second-order mixed neutral integro-dynamic equation with damping and a nonpositive neutral term of the form: \begin{equation}\label{h1} (r(t)(z^\Delta(t))^\gamma)^\Delta+ p(t)(z^\Delta(t))^\gamma+ g(t, x(\tau(t)))+\int\limits_{0}^{t}a(t,s)f( s, x(s))\Delta s=0, \end{equation} where \begin{equation}\label{h2} z(t)=x(t)-p_1(t)x(\eta_1(t))+p_2(t)x(\eta_2(t)), \end{equation} on a time scale $\mathbb{T}$. The obtained results not only present some new criteria for such kind of neutral differential equations and neutral difference equations as special cases, but also extend some results obtained on time scales. An example is given to illustrate the importance of our work.


Other data

Title Oscillation results for second-order mixed neutral integro-dynamic equations with damping and a nonpositive neutral term on time scales
Authors Heba M. Arafa ; Agwa, H. A. ; Chatzarakis, G. E.; Abdel Naby, M.A. 
Keywords Integro-dynamic equations;oscillation;Time scales
Issue Date 18-Jan-2022
Journal novi sad journal of mathematics 
Volume 51
Issue 2
Start page 155
End page 173
ISSN 14505444
DOI https://doi.org/10.30755/NSJOM.12047
Scopus ID 2-s2.0-85123085117

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check



Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.