Exogenous application of alpha-lipoic acid mitigates salt-induced oxidative damage in sorghum plants through regulation growth, leaf pigments, ionic homeostasis, antioxidant enzymes, and expression of salt stress responsive genes

Youssef, Montaser H.M.; Raafat, Aly; Abou El-Yazied, Ahmed; Selim, Samy; Azab, Ehab; Khojah, Ebtihal; El Nahhas, Nihal; Ibrahim, Mohamed F.M.;

Abstract


In plants, α-Lipoic acid (ALA) is considered a dithiol short-chain fatty acid with several strong antioxidative properties. To date, no data are conclusive regarding its effects as an exogenous application on salt stressed sorghum plants. In this study, we investigated the effect of 20 µM ALA as a foliar application on salt-stressed sorghum plants (0, 75 and 150 mM as NaCl). Under saline conditions, the applied-ALA significantly (p ≤ 0.05) stimulated plant growth, indicated by improving both fresh and dry shoot weights. A similar trend was observed in the photosynthetic pigments, including Chl a, Chl b and carot-enoids. This improvement was associated with an obvious increase in the membrane stability index (MSI). At the same time, an obvious decrease in the salt induced oxidative damages was seen when the concentration of H2O2 and malondialdehyde (MDA) was reduced in the salt stressed leaf tissues. Gener-ally, ALA-treated plants demonstrated higher antioxidant enzyme activity than in the ALA-untreated plants. A moderate level of salinity (75 mM) induced the highest activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POX), and ascorbate peroxidase (APX). Meanwhile, the highest activity of catalase (CAT) was seen with 150 mM NaCl. Interestingly, applied-ALA led to a substantial decrease in the concentration of both Na and the Na/K ratio. In contrast, K and Ca exhibited a considerable increase in this respect. The role of ALA in the regulation of K+/Na+ selectivity under saline condition was con-firmed through a molecular study (RT-PCR). It was found that ALA treatment downregulated the relative gene expression of plasma membrane (SOS1) and vacuolar (NHX1) Na+/H+ antiporters. In contrast, the high-affinity potassium transporter protein (HKT1) was upregulated.


Other data

Title Exogenous application of alpha-lipoic acid mitigates salt-induced oxidative damage in sorghum plants through regulation growth, leaf pigments, ionic homeostasis, antioxidant enzymes, and expression of salt stress responsive genes
Authors Youssef, Montaser H.M.; Raafat, Aly; Abou El-Yazied, Ahmed ; Selim, Samy; Azab, Ehab; Khojah, Ebtihal; El Nahhas, Nihal; Ibrahim, Mohamed F.M.
Keywords Salinity;Sorghum bicolor L. moench;Transporter proteins and oxidative stress;α-lipoic acid
Issue Date 1-Nov-2021
Journal Plants 
Volume 10
Issue 11
ISSN 2223-7747
DOI 10.3390/plants10112519
PubMed ID 34834882
Scopus ID 2-s2.0-85119281289

Attached Files

File Description SizeFormat Existing users please Login
22.pdf3.34 MBAdobe PDF    Request a copy
Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check



Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.