Identifying Different Types of Biclustering Patterns Using a Correlation-Based Dilated Biclusters Algorithm

Mounir, Mahmoud; Hamdy, Mohamed; khalifa, mohamed essam;

Abstract


An essential step in the analysis of gene expression profiles is the identification of sets of co-regulated genes or genes tend to be active under only subsets of experimental conditions or participate in multiple cellular processes or functions. Biclustering is a non-supervised technique exceeds the traditional clustering techniques because it can find groups of both genes and conditions simultaneously. In this paper, we proposed a biclustering algorithm called Correlation-Based Dilated Biclusters CBDB to find sets of biclusters with correlated gene expression patterns. This algorithm has many phases starting with the preprocessing phase, determination of elementary biclusters, then the dilation phase depending on a heuristic searching approach with Pearson correlation coefficient as a measure of coherency, after that, the removal phase to exclude sets of genes and conditions that show low level of coherency, finally, the elimination of duplicated and overlapped biclusters phase. This approach showed reasonable results on both synthetic and real datasets compared with other correlation-based biclustering techniques.


Other data

Title Identifying Different Types of Biclustering Patterns Using a Correlation-Based Dilated Biclusters Algorithm
Authors Mounir, Mahmoud ; Hamdy, Mohamed; khalifa, mohamed essam 
Keywords Biclustering;Clustering;Correlated patterns;Gene expression profiles;Microarrays
Issue Date 1-Jan-2020
Journal Advances in Intelligent Systems and Computing 
ISBN [9783030141172]
ISSN 21945357
DOI 10.1007/978-3-030-14118-9_26
Scopus ID 2-s2.0-85064045157

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check



Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.