The miticidal activity of silver nanoparticles towards phytophagous and predatory mites of citrus: efficacy and selectivity

Sherif B. Abdel Ghani;

Abstract


The biological activity of silver nanoparticles (SNP) has grabbed the attention of researchers in different fields, but this attention did not
go beyond bioassays within laboratory or growth chambers. Few studies have investigated the miticidal activity of SNP, mostly against
Tetranychus urticae Koch (Acari: Tetranychidae). Despite the promising preliminary results, field evaluation of miticidal activity towards
both pest and non-target organisms are still lacking. SNP were chemically synthesized utilizing trisodium citrate in excess and then miticidal
activity was tested against phytophagous and predatory mites in trifoliate orange (Citrus trifoliata L.). A commercial formulation of Bifenthrin
was used as reference. In laboratory, SNP showed slightly higher miticidal activity, than bifenthrin with LC50
of 29.3, 43.9 and 27.4 mg/l
in SNP and 43.3, 38.9 and 31.6 mg/l in bifenthrin with efficiency factor of 1.5, 0.9 and 1.2 for P. oleivora, E. orientalis and B. obovatus,
respectively. In case of SNP, it showed lower toxicity than bifenthrin towards predatory mites with LC50
of 789.9 and 656.0 mg/l in SNP
and 48.2 and 45.5 mg/l in bifenthrin for P. oleivora, E. orientalis, and B. obovatus, respectively, with safety factor of 14 to 16 times for
A. swirskii and P. plumifer, respectively. While in the field, LC50
values of SNP were 25.4, 36.0 and 27.0 mg/l while bifenthrin values were
39.2, 39.9, 29.7 mg/l for P. oleivora, E. orientalis and B. obovatus, respectively. SNP showed highly selective toxicity (23 times at LC50
)
towards phytophagous than predatory mites (P= 0.0001), whereas bifenthrin showed no selectivity (P= 0.750). Moreover, residues of
SNP provided a 14-days prolonged activity against infesting mites. Exhibiting high selectivity towards the phytophagous mites, residues
of SNP slightly affected the predatory ones. SNP showed comparable efficacy to bifenthrin for control of moving stages of P. oleivora,
E. orientalis and B. obovatus mites and surpassed bifenthrin in ovicidal activity and saving associated predatory mites. SNP may be utilized
for control of P. oleivora, E. orientalis, and B. obovatus mites in orange.


Other data

Title The miticidal activity of silver nanoparticles towards phytophagous and predatory mites of citrus: efficacy and selectivity
Authors Sherif B. Abdel Ghani 
Keywords Miticidal activity of SNP; Phytophagous mites; Predatory mites; Selectivity; Bifenthrin
Issue Date 4-May-2022
Publisher Emirates Journal of Food and Agriculture
Journal Emirates Journal of Food and Agriculture 
Volume 34
Issue 6
Start page 509
End page 518
DOI doi: 10.9755/ejfa.2022.v34.i6.2888

Attached Files

File Description SizeFormat Existing users please Login
nanosilver and orange emirates journal.pdf1.26 MBAdobe PDF    Request a copy
Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check



Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.