Eigenvalue distribution of integral operators defined by Sobolev-Orlicz kernels .

Maamoun A. E. Faragallah ';

Abstract


In this introductory chapter we summarize some well known defini­ tions and explain certain terminology used throughout this thesis.Also this chapter contains the definition and elementary properties of the
Lorentz-sequence spaces lp,q,the Besov spaces B;,., the Sobolev spaces
w;, the Orlicz spaces Lif> and the (p, q)-summing operators Ilv,q• Fur­
ther, the s-numbers of operators in Besov spaces is contained.
We use standard notations: N, Z, IR and 1C for the natural, integer, real and complex numbers respectively.We let N0 = N U {O}.The Ba­ nach spaces will be abbreviated by X,Y, Z and sometime by A, B.By operators we mean continuous linear operators between Banach spaces. The space of continuous linear operators T from X to Y under the operator norm:


Other data

Title Eigenvalue distribution of integral operators defined by Sobolev-Orlicz kernels .
Other Titles توزيع القيم الذاتية للمؤثرات التكاملية المعرفة بواسطة نواه اورليتش - سوبوليف
Authors Maamoun A. E. Faragallah '
Issue Date 1996

Attached Files

Recommend this item

Similar Items from Core Recommender Database

Google ScholarTM

Check

views 1 in Shams Scholar
downloads 1 in Shams Scholar


Items in Ain Shams Scholar are protected by copyright, with all rights reserved, unless otherwise indicated.